
Job Binding

Services (JBS)
System Programming Guide

This manual applies to ThruPut Manager® Version 7 Release 1.0 PTF level 7109 and to all further releases
until otherwise indicated. This material contains proprietary information on ThruPut Manager. Use of this
manual is subject to the terms of the user’s software license agreement for ThruPut Manager.

The complete list of manuals relevant to this release is available from the Customer Center on
www.mvssol.com, from where any of the manuals may be downloaded.

ThruPut Manager is a registered trademark of MVS Solutions Inc.

TM/Service Level Manager, TM/Production Control Services, TM/Drive Booking Services, TM/Dataset Contention Services,
TM/Job Binding Services, TM/User Control Services, and TM/JES3 Compatibility Services are trademarks of MVS Solutions Inc.

Other trademarks and registered trademarks used in this document are the property of their respective owners and are to be regarded
as appearing with the appropriate ™ or ® symbol.

© 1985 to 2017 MVS Solutions Inc. All rights reserved.

The Acrobat® PDF Format

This set of manuals has been formatted to make it suitable for soft copy as well as hard copy formats. If
reading the manual online, note that:

• Entries in the Table of Contents are hot-linked and can be used for document navigation.

• Other cross-references appear in blue type and are also hot-linked for easy navigation.

For best results, turn on the Bookmarks feature in your Acrobat® PDF reader.

Preface

About This Manual

This manual provides information for systems programmers involved in plan-
ning, installing, and customizing the Drive Booking Services (DBS). There are
five system programming manuals as listed below. Information described in
other manuals is referred to by guide name and chapter as a quick and easy cross
reference.

• Base Product System Programming Guide

• Drive Booking Services (DBS) System Programming Guide

• Dataset Contention Services (DCS) System Programming Guide

• User Control Services (UCS) System Programming Guide

• Exits System Programming Guide

Summary of Changes

V7R1-7109
(April 2017)

• No changes.

V7R1-7108
(February 2017)

• No changes.

V7R1-7107
(May 2016)

• No changes.

V7R1-7106
(November 2015)

• No changes.

TM7R1-7109 3

Job Binding Services

V7R1-7104
(July 2015)

• No changes.

V7R1-7101
(July 2014)

• This is a base manual for ThruPut Manager Version 7 Release 1.1.

4 TM7R1-7109

ThruPut Manager® System Programming Guide

Table of Contents
Preface

About This Manual. . 3
Summary of Changes . 3

The TM/JBS Component
Chapter 1. The TM/JBS Functions—An Optional Playground

TM/Job Binding Services Option . 11
Functions of TM/Job Binding Services 11

Job Action Language (JAL) Extensions for TM/JBS 12
Job Binding Services (JBS) . 12
Job Limiting Services (JLS) . 13
Job Chaining Services (JCS or Before & After) 14
Mellon Bank Compatibility Services. 15
JECL Statement Extensions . 15
Started Task Support . 15
Application Program Interface Function. 16

User Display Facility Extensions . 16
User Exits . 16
JBS File Requirements . 16

Chapter 2. Job Binding Services (JBS) Function

Description . 17
Implementation Summary . 17
Job Binding Agents . 18

What is a Binding Agent? . 18
Binding Agent Names . 18
Binding Agent Attributes. . 19
Agent Definition . 20
Activating Binding Agents . 22
Requesting BINDING . 23

JBS Considerations . 24
JECL Considerations . 24
Binding Agent—Verifying and Reserving 25
Definition/Deletion of Agents . 25
API Considerations . 25
Job Action Language . 26
Activation/Deactivation of PERMANENT Agents 28

UDF Extensions for JBS. . 30
Displaying Installation-defined Information 31

Facilities Summary . 32

Chapter 3. JBS: Incompatible Agents

Incompatible Agents: The Problem . 35
Incompatibility Categories: The Solution 35
Usage And Examples . 36

TM7R1-7109 5

Job Binding Services

Assigning Categories . 36
Sample Category Definitions . 36
Category 0: The Default . 36
Category Relationships . 37
Conflicting Definitions . 38
Self-incompatibility . 38
“Soft” Incompatibility: $$DELETE 38
Multiple Agents In A Single Bind Statement 39

A Case Study . 39

Chapter 4. JBS: Software Access Control (SAC)

Software Access Control Overview . 43
How SAC Works . 43
The SAC Table . 45
Table Coding Syntax . 45
Table Structure . 46

Associating Table Statements with a System. 47
Mandatory TYPE Statements . 48
Optional TYPE Statements . 52
TYPE Statements for SAC Control 53
TSO Access Control. . 53

Batch Access Control . 56
Sample SAC Table . 61

Chapter 5. JBS: Environment Services

Prerequisites . 65
What is a JBS Environment? . 65

JBS Environments vs. Scheduling Environments 65
What Is a Resource Element?. . 66

JBS Resource Elements vs. SCHENV Resource Elements 66
Components to Support JBS Environments 67

JBS Environment Definition ISPF Dialog 67
JAL for JBS Environments . 67
JECL for JBS Environments. . 68
MHS for JBS Environments . 68
Operator Commands for JBS Environments 69

Implementation . 69
Defining JBS Environments and Resource Elements 70

Creating Resource Elements . 73
Creating JBS Environments . 76
Installing a JBS Environment . 82
Notes and Considerations. . 83

Converting from IBM Scheduling Environments. 85
Using JAL with JBS Environments . 86
Using JECL with JBS Environments. 86

Chapter 6. Job Limiting Services (JLS) Function

Description . 87
Implementation Summary . 88
Job Limiting Agents . 88

6 TM7R1-7109

ThruPut Manager® System Programming Guide

What Is a Limiting Agent? . 88
Activating Limiting Agents . 89
The JLS_LIMITDEF Statement in JAL 89
JAL Action Statements . 92

Job Limiting Considerations . 93
System Level Limiting . 96
JLS and JES2 Exit 14 (Job Queue Work Select) 97
UDF Extensions For JLS . 99

Displaying Installation-defined Information 99
Facilities Summary . 100

Chapter 7. Job Chaining Services (JCS) Function: Before & After

Introduction . 103
Requirements . 103
Job Chaining Services—Before & After 103

BATCH Name Conventions . 104
Implementation Summary . 104
JECL Statements . 104
Batch Job Sequencing . 105

Adding a BATCH Name to TSUs and STCs. 105
Implementation . 105
Considerations . 106
Example . 107

UDF Extensions for JCS. . 107
Facilities Summary . 108

Chapter 8. Mellon Bank Compatibility Services

Introduction . 109
Enabling Mellon Bank Compatibility . 109
The Resource Routing Facility . 109

Resource Definition . 110
Resource Activation/Deactivation 110
Display Facilities. . 110
JECL Control Statements . 111
Special Cases . 111
Additional Considerations . 112

The CNTL Facility . 112
Implementation . 112

The WITH Facility . 112
Implementation . 113

Facilities Summary . 113

Chapter 9. DD Subsystem Interface

Introduction . 115
DD SUBSYS Interface . 115
DD SUBSYS . 116

Chapter 10. Application Program Interface (API)

Description . 119
Activating/Deactivating Using the API. 119

TM7R1-7109 7

Job Binding Services

Testing Agent Status Using the API. 121
Facilities Summary . 123

Index

8 TM7R1-7109

ThruPut Manager® System Programming Guide

Job Binding Services

Chapter 1. The TM/JBS Functions—An Optional
Playground

This chapter describes the functions provided by the Component TM/Job Binding Services.

TM/Job Binding Services Option

ThruPut Manager offers a Component that is installed on top of the ThruPut
Manager Base Product. A collection of functions is provided that significantly en-
hance the control that an installation has over the JES2 job selection process.
The Component is named “TM/Job Binding Services.” This chapter discusses
this package.

We remind you that the name Job Binding Services is used with two different
meanings:

1. The ThruPut Manager Component is “TM/Job Binding Services” or
“TM/JBS.”

2. One of the Applications included with this Component is “Job Binding Ser-
vices” or “JBS.”

We will make the distinction as clear as possible.

Functions of TM/Job Binding Services

The TM/Job Binding Services Component of ThruPut Manager extends the facil-
ities in the Base Product to the job selection process. With the functionality pro-
vided, job selection can be made dependent on the availability of logical
resources. It can also be limited to a number established by the installation.
Transmission of jobs to another NJE node can also be controlled with this facil-
ity.

This Component provides the following additional functions:

1. Job Action Language extensions for all TM/JBS components.

2. Job Binding Services.

3. Job Limiting Services.

4. Job Chaining Services.

TM7R1-7109 Chapter 1. The TM/JBS Functions—An Optional Playground 11

Job Binding Services

5. Mellon Bank Compatibility Services.

6. JECL Services Extensions.

7. Started Task Support Services.

8. API Services.

9. Extensions to the User Display Facility.

10. User Exit Extensions.

Job Action Language (JAL) Extensions for TM/JBS

Extensions to JAL are provided to support TM/JBS. They allow you to manage
Binding and Limiting Agents.

A summary description of the JAL extensions is provided in Base Product: Sys-
tem Programming Guide “Chapter 13. Job Action Language (JAL) Function.”

For a complete description, see the JAL Reference Guide.

Job Binding Services (JBS)

Job Binding Services, as its name indicates, addresses the problem of relating
jobs that provide resources to each other. For example, database managers that
provide services to batch jobs, such as IMS or DATACOM, create environments
that are difficult to manage. JBS provides a cost-effective solution to the prob-
lems associated with that type of environment.

JBS provides a comprehensive set of facilities for the complete management of
all aspects of job binding. This includes:

• JBS JES2 Control cards.

• A special “comment” form of JECL statements that permits BIND state-
ments to be included in JCL procedures.

• Started task support using a DD subsystem interface.

• Job Action Language extensions.

• Operator commands.

• Application Program Interface by means of a simple message intercept.

• JBS initialization parameters for initial activation and JBS “cold starts.”

12 Chapter 1. The TM/JBS Functions—An Optional Playground TM7R1-7109

ThruPut Manager® System Programming Guide

With the above facilities, users can:

• Activate and deactivate installation-defined Binding Agents.

• Have jobs automatically scheduled or held, depending on the status of the
Binding Agents.

• Automatically “insert” a BIND statement for a job using JAL facilities.

• Schedule jobs that have dependencies by using the BIND facility.

• Direct jobs to a given processor by using the BIND facility.

• Transmit jobs to another NJE node.

• Verify the usage of Job Binding Control statements in the JAL so naming
conventions and usage standards can be easily managed.

• Control whether Binding Agents are active simultaneously on the same sys-
tem.

This function is described in “Chapter 2. Job Binding Services (JBS) Function.”

JBS also supports:

• JBS Environments, which are intended to provide extended capabilities to
users of IBM scheduling environment (SCHENV) support. This function is de-
scribed in “Chapter 5. JBS: Environment Services.”

• Software Access Control (SAC), which allows your installation to control
software licence compliance. This function is described in “Chapter 4. JBS:
Software Access Control (SAC).”

Job Limiting Services (JLS)

Job Limiting Services is designed to limit the parallel execution of certain types
of work without resorting to separate classes.

The proliferation of classes makes the task of deploying initiators difficult. For
operating staff, a large number of classes makes their job confusing. With JLS,
you can greatly reduce the “alphabet soup” required to control different types of
work in a standard z/OS JES2 environment.

JLS delivers to your installation a set of powerful facilities to manage Job Limit-
ing. This includes:

• The ability to associate jobs and Limiting Agents using JAL.

• Facilities to create Limiting Agents dynamically in JAL. This greatly simpli-
fies the administrative requirements.

TM7R1-7109 Chapter 1. The TM/JBS Functions—An Optional Playground 13

Job Binding Services

• The ability to associate jobs with a particular Agent but with different
“weights” so one job can, if desired, count as several jobs.

• Facilities to request that a particular job must execute in “exclusive mode”,
that is, no other job associated with the Limiting Agent can be executing at
the same time.

• A further refinement of the “exclusive mode” is provided with the
DRAIN/NODRAIN facility. When DRAIN is associated with a job requesting
“exclusive control”, other jobs that use the resource in non-exclusive mode
are not selected. This mode expedites the availability of the resource for ex-
clusive usage.

• A further degree of operational control by a comprehensive set of commands.
With operator commands, the limits set in JAL can be overridden. This per-
mits rapid response to unusual situations that might be creating shortages of
computing resources.

This function is described in “Chapter 6. Job Limiting Services (JLS) Function.”

Job Chaining Services (JCS or Before & After)

The Before & After mode of Job Chaining Services provides full compatibility
with the Mellon Bank “Before & After” Facilities. Some additional services are
also provided. B&A is implemented as a separate Control File Application with
the name Job Chaining Services. It includes:

• Support for the /*BEFORE and /*AFTER JECL statements.

• Operating commands to display dependencies.

• An additional JECL statement /*JCS BATCH that allows the user to name a
group of jobs. This includes support for the SEQUENCE keyword, which en-
sures that within a batch, jobs will run in the order in which they were sub-
mitted.

• The additional “BATCH=name” keyword in /*BEFORE and /*AFTER state-
ments to restrict the scope of the statements to the named group of jobs.

• JAL extensions to help your installation manage the usage of Batch Names,
so conflicts can be avoided.

This function is described in “Chapter 7. Job Chaining Services (JCS) Function:
Before & After.”

14 Chapter 1. The TM/JBS Functions—An Optional Playground TM7R1-7109

ThruPut Manager® System Programming Guide

Mellon Bank Compatibility Services

The Mellon Bank Compatibility Services provides the following:

• A facility to activate Mellon Bank Compatibility Services through a keyword
in TMPARM.

• A facility to indicate to ThruPut Manager what to do with your existing JECL
Mellon Bank statements.

• Support for /*CNTL, /*ROUTE XEQ, and /*WITH Mellon Bank JECL state-
ments.

• A definition statement in JAL to allow you to replicate the function of the
/*CNTL statement.

The Mellon Bank Compatibility Services, together with the Before & After facili-
ties described above, provide upwards compatibility to the most commonly imple-
mented Mellon Bank User Mods.

This function is described in “Chapter 8. Mellon Bank Compatibility Services.”

JECL Statement Extensions

The TM/Job Binding Services Component extends JECL support to include the
functions introduced by TM/JBS. A number of different control statements are
provided. JECL statements are available for Job Binding Services, Job Limiting
Services, and Job Chaining Services.

If you have JECL statements that provide similar functions and you want to con-
vert them to TM/JBS format, this facility provides a mechanism for capturing
and automatically converting your statements to the new format.

For a detailed description of all the JECL statements refer to JECL Reference
Guide.

Started Task Support

Started tasks can use the services of TM/JBS JECL facilities, provided that the
appropriate JECL keywords are coded on the TMPARM statement. A description
of how this support works is included in JECL Reference Guide.

Previous versions of ThruPut Manager provided an equivalent mechanism that
used the SUBSYS keyword of the JCL DD statement, allowing you to “code” the
equivalent of JECL statements in your started task JCL. This DD subsystem in-
terface has been retained for compatibility, and is described in “Chapter 9. DD
Subsystem Interface.”

TM7R1-7109 Chapter 1. The TM/JBS Functions—An Optional Playground 15

Job Binding Services

Application Program Interface Function

There are situations where you want to activate or deactivate Binding Agents
from a program, or as a result of an application having “done something”. A typi-
cal example is a CICS region that dynamically allocates and deallocates re-
sources. In this case, no step initiation or step termination takes place. The
region might simply deallocate a database dynamically for maintenance pur-
poses. Prior to doing that, the Binding Agent associated with that service should
be deactivated.

An API is provided to deal with this case.

This function is described in “Chapter 10. Application Program Interface (API).”

User Display Facility Extensions

TM/JBS extends User Display Facility support to include UDF Windows for each
TM/JBS component. Examples of the information displayed in these windows are
included in the chapters describing the JBS, JLS, and JCS functions.

User Exits

An additional user exit, exit 19, also can be used to support TM/JBS. This exit al-
lows you to examine JECL statements. A summary of the exit is provided in
Base Product: System Programming Guide “Chapter 11. Installation Exits
Summary.”

Complete details of installation exits, including design considerations and imple-
mentation descriptions, are provided in the manual Exits: System Program-
ming Guide.

JBS File Requirements

TM/JBS requires the TM Control File to be active. The Control File is described
in Base Product: System Programming Guide “Chapter 3. File Definition
Services (FDS) Function.”

16 Chapter 1. The TM/JBS Functions—An Optional Playground TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 2. Job Binding Services (JBS) Function

This chapter describes the capabilities and services provided by the JBS Function.

Description

Job Binding Services helps you solve the problem of relating jobs that provide re-
sources to each other. A typical example of an environment that JBS has been
designed to cope with is a database manager (e.g. IMS or DB2) that provides ser-
vices to batch jobs with their associated problems. JBS has a comprehensive set
of facilities for complete management of all aspects of Job Binding, including:

• JBS JES2 Control cards.

• A DD Subsystem interface for started tasks.

• Job Action Language extensions.

• Operator commands.

• Application Program Interface employing a simple message intercept.

• JBS initialization parameters for initial activation and JBS “cold starts.”

• Addition of a JBS Display Window to the User Display Facility.

Implementation Summary

Before implementing the JBS function you should become familiar with its facili-
ties and purpose. The TM/Job Binding Services Concepts and Facilities
publication provides an overall description of this function. Some examples of us-
age are included.

To implement the JBS Function you must:

• Determine the names and types of Binding Agents that your installation
needs.

• Use the /JBS DEFINE operator command to define the Binding Agents.

• Put in place operational procedures for the Activation/Deactivation of
PERMANENT Binding Agents. You should also establish regular backups of
your Agent definitions with the JBS DEFINE TODSN command.

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 17

Job Binding Services

• Define the rules and Agents that users can place in their job streams using
JECL statements.

• Add any statements needed in JAL to manage JECL and Binding Agents.

• Consider procedures that might benefit from //*+JBS BIND statements.

Job Binding Agents

Job Binding Agents provide the essential mechanism for establishing inter-job
relationships. These Agents also allow you to associate jobs with the availability
of a particular resource. One example is licensed software in a given processor,
such as a compiler.

What is a Binding Agent?

Agents are self-describing logic elements. They contain information about their
attributes and serve as anchors to jobs that are “bound” by these Agents.

A Binding Agent does not represent any physical resource. It represents what-
ever your installation chooses it to represent.

Binding Agent Names

Binding Agents have a name that is chosen by your installation. They also have
attributes that indicate certain characteristics. These characteristics, to be ex-
plained below, make certain Agents more suitable than others for particular
types of work.

The names follow dataset naming conventions. They can be two levels. For ex-
ample:

CICS.PAYROLL

is a valid Binding Agent name.

COMPSAS

is also a valid Binding Agent name.

CICS.DEV.G1

is not a valid name.

� Binding Agents are predefined by the installation before they can be
used. This allows control over usage and naming standards.

18 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Binding Agent Attributes

The attributes have been designed to address a variety of situations. You proba-
bly have only some of the requirements that these Agents can address. As a re-
sult, if some of the characteristics do not appear to have any applicability in your
installation, simply ignore that feature.

Some attributes are assigned when an Agent is defined. This allows tight opera-
tional control. Some other attributes are assigned at activation time.

Attributes at Definition Time

The first distinction with Binding Agents is two-fold:

1. Is the Agent intended to be job-related?

2. Is it intended to be PERMANENT?

While all the Agents are used by jobs for scheduling purposes, the above attrib-
utes refer to activation:

If an Agent is to be activated by a job and deactivated at the end of the job
then the type of Binding Agent to use is a Job-related Binding Agent. A good
example of this situation is an IMS region.

If an Agent is to be activated with a command and remain active until explic-
itly deactivated, then you want a PERMANENT Agent. An example could be
an Agent that is used to direct jobs to a processor (in a multi-CPU MAS com-
plex) that has a licensed software package that is not available anywhere
else. In this case a number of jobs want to be bound to that Agent, but its ac-
tivation is associated with a particular CPU. Hence, the Agent is activated
with a command. It stays active regardless of the status of the processor.
Jobs are automatically assigned to that processor and are selected for execu-
tion whenever the processor is available.

The second distinction concerns uniqueness:

1. Do you want an Agent to be unique in your MAS complex?

2. Do you want an Agent to be able to appear more than once in your MAS com-
plex?

If a given service is to be provided only in a single processor, then your Agent
should have the attribute of UNIQUE. This prevents an accidental activation of
the same Agent in another processor. Note that the attributes UNIQUE and
MULTIPLE refer to a MAS complex. Regardless of the attribute, an Agent can
be active only once on each processor.

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 19

Job Binding Services

The third distinction allows you to control which Binding Agents can be used
to initiate NJE transmission. At definition time you establish whether or not an
Agent can be activated with the XMIT attribute (only with an operator com-
mand).

Attributes at Activation Time

At activation time a Binding Agent can be given one of the following three attrib-
utes:

1. GLOBAL

2. LOCAL

3. XMIT

GLOBAL indicates that the Agent is active in all the systems in a MAS complex.
An example of a situation that requires a GLOBAL Agent is when you use the
Binding Agent mechanism to signal an event such as “overnight processing can
begin.” In this case, it applies to all the systems in the MAS complex.

LOCAL indicates that the Binding Agent is to direct jobs to a particular system.
The availability of an IMS online region is a good example.

XMIT indicates that jobs associated with this Binding Agent are to be transmit-
ted to the designated NJE node. This attribute is valid only if the Agent
was defined with that capability, and can only be activated with a com-
mand.

� Note that transmitted jobs are re-analyzed on the receiving node.

Agent Definition

Before any Binding Agents can be activated or deactivated, they must be defined
to Job Binding Services. Agents can be defined either individually with a com-
mand or using Group Definition Services from a file. For a detailed explanation,
refer to the Operating Guide publication for the JBS DEFINE commands.

It should be noted that this is required only when the Control File is cold started,
or new Agents are to be added. Once the Agents have been defined, they exist un-
til the Control File is reformatted.

If you plan to reformat the Control File but intend to redefine the same Agents,
you simply invoke the Group Create Services to have a file created with all the
necessary definitions.

20 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Binding Agents can be defined as having one of the following characteristics:

PERMANENT: This indicates that the Agent is not directly associated
with an executing job. This type of Agent, once it is activated, must be ex-
plicitly deactivated.

MULTIPLE: This type of Agent is Job Related. It normally remains acti-
vated while a particular job (or job step) is executing. Once the job that
activated the Agent terminates, the Agent is automatically deactivated.
MULTIPLE means that in a MAS complex there can be more than one
Agent active with the same name; however, there can be only one per ma-
chine.

UNIQUE: If an Agent has the UNIQUE attribute, JBS schedules only
one job that activates/deactivates the Agent in the shared spool complex
at any given time. This ensures that jobs using an Agent with this attrib-
ute are serialized.

XMIT: This capability applies to PERMANENT Binding Agents. It allows
the initiation of transmission to another NJE node for jobs that are
bound to that type of Agent. The activation of an Agent with the XMIT
keyword can be done only with an operator command. This provides
complete operational control of the facility.

In some circumstances, it might be important to know the source of the last re-
quest to activate or deactivate an Agent. To provide this information, you can
also combine LOG with any of the above attributes:

LOG: This attribute requests recording in the system log for all ACTI-
VATE and DEACTIVATE requests by a job for this Agent.

A number of further definition attributes are provided for PERMANENT
Agents. Each attribute is designed to deal with a particular situation, so if you do
not recognize the purpose of an attribute, it is likely that you do not have that
problem in your installation.

The following attributes apply to PERMANENT Agents only, and can be speci-
fied alone or together:

WARN: This attribute causes a non-deletable message to be issued when
the Agent is inactive and a job binding to that Agent enters the system.
The message is issued on the system that has selected the job binding to
the inactive Agent, but the Agent can be activated from any system in the
complex. The system requiring the Agent detects that the Agent has been
activated, and deletes the message.

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 21

Job Binding Services

OPER: This attribute specifies that the Agent can be controlled only by
operator commands. If a job includes activate or deactivate requests for
an Agent with the OPER attribute, it is failed with a JCL error.

Finally, you can use the JBS REDEFINE command to change certain attributes
for an existing Agent:

• LOG | NOLOG

• OPER | NOOPER

• WARN | NOWARN

Activating Binding Agents

There are four ways to activate Binding Agents, depending on the circumstances:

1. JECL JES2 Control Statements.

2. DD Subsystem Interface.

3. Application Program Interface (API).

4. Operator Commands.

The following sections provide a brief explanation of each method and the rea-
sons for using it.

JECL JES2 Control Statements

Jobs that activate Binding Agents use the JECL statement mechanism. You can
have up to 6 ACTIVATE JECL statements in a job.

The statements allow the activation of Agents either at job initiation or at the
initiation of a named step.

For a comprehensive description of JBS JECL statements refer, to JECL Refer-
ence Guide.

DD Subsystem Interface

� Although this interface is still supported, it is no longer necessary.
Instead, we recommend using the comment form of ThruPut Man-
ager JECL statements (//*+JBS ACTIVATE ...).

Started tasks can include JBS ACTIVATE and JBS DEACTIVATE JECL state-
ments. The DD subsystem interface also provides started tasks with the ability
to Activate and Deactivate Binding Agents.

22 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Each DD SUBSYS request is the equivalent of a JECL statement for a job. The
same rules apply.

For a detailed explanation of the DD subsystem interface, refer to “Chapter 9.
DD Subsystem Interface.”

Application Program Interface (API)

Two different mechanism can be used with the API:

• A simple message (WTO) intercept with a pre-defined message ID and a
pointer to the particular Binding Agent JECL reference. When the message
is intercepted the specified Agent is activated or deactivated. This technique
is normally used when you have control of the application, so you can issue
the message.

• A message intercept where you specify a text pattern to be matched against
messages generated by the address space where the job is running. When a
message is generated in the particular address space that matches the text
pattern, the specified Agent is activated or deactivated. This technique is
normally used when you have no control over the application’s messages, but
you can uniquely identify parts of the message.

For a detailed description of the API, refer to “Chapter 10. Application Program
Interface (API).”

Operator Commands

Operator commands are provided to activate and deactivate Agents. If an Agent
has been defined using the OPER attribute, it can be activated or deactivated
only by using operator commands.

For a complete description of the JBS commands for activating and deactivating
Agents, refer to the Operating Guide.

Requesting BINDING

Jobs can request Binding in one of the following ways:

• The simplest method is using the JECL BIND statement. Jobs that want to
use a Binding Agent for execution purposes include a JECL BIND statement
in their JCL. Up to 24 BIND statements can appear in a job.

• In cases where transparency is desired, so that users do not have to take any
action with their JCL, JAL can be used to insert BINDING statements for a
particular job. Up to 24 BIND statements can be inserted by JAL.

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 23

Job Binding Services

• Again, started tasks can use the DD SUBSYS to request Binding. The same
rules used for JECL statements apply.

• A list of Binding requests can be created using the pre-JAL exits (1-5 and 19).
To use these Binding requests, your JAL must execute an action statement
indicating that requests have been defined in exits:

JBS BIND FROM_EXITS

Complete details about how to use this facility can be found in the Exits:
System Programming Guide.

A single JECL BIND statement allows for the inclusion of four Binding Agents.
These four Agents represent alternatives, that is, they are OR conditions. Any
one of them satisfies the Binding requirement.

Multiple Binding statements represent an AND condition, that is, each state-
ment must be satisfied before the job can be scheduled. Between JECL state-
ments and JAL, a maximum of 48 BIND statements can be associated with a job.

JBS Considerations

This section outlines some considerations that could affect the way you imple-
ment JBS in your installation.

JECL Considerations

• The JBS JES2 control statements are processed in the order that they are en-
countered in the job stream.

• During testing of JBS or if jobs are to be transmitted to NJE nodes that do not
have ThruPut Manager, consider using the //*+ form of JBS control state-
ments. They will not cause errors in non-ThruPut Manager environments
because they are treated as comments.

• If BIND requests are inserted with JAL for jobs that are to be transmitted,
the inserted BIND statements are not seen at the receiving NJE node.

• A job that has JBS ACTIVATE statements for Job-related Binding Agents
that are currently active (via another job) is not eligible for selection until the
other job(s) terminate.

• Care should be taken when multiple BIND statements are included in a job to
make sure that conflicting BINDs are not created. Jobs are not selected until
all the BINDs can be satisfied. For additional facilities that help you to man-
age Binding Agent conflicts, see “Chapter 3. JBS: Incompatible Agents.”

24 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Binding Agent—Verifying and Reserving

We recommend that a nomenclature for naming Binding Agents be established
from the beginning. This makes verification in JAL a simple task and can avoid
usage conflicts by different groups.

All Binding Agent references are verified at Job Analysis time. The Agents must
have been defined, otherwise the job is failed with a message.

To ensure that there are no conflicts when activating Agents at the step level
(some time after the job started execution), the following takes place:

• As soon as the job is allowed to be selected for execution, all the Job-related
Binding Agents that the job refers to with JBS ACTIVATE control state-
ments are reserved. This ensures that the job will not run into any problems
when it activates the Agents.

• Any Job-related Binding Agent that is reserved or active is considered to be
busy. No other job will be allowed to start if it references a busy Agent in a
JBS ACTIVATE statement (unless it has been defined as MULTIPLE). As a
result, a Binding Agent can have one of the following states:

° Defined

° Reserved but not Active (busy state)

° Reserved and Active (busy state)

Definition/Deletion of Agents

The JBS DELETE command will only remove Agents that are not busy.

The whole concept of Binding Agents is predicated on the presence and status of
such Agents. No actions can be taken as a result of the absence of Agents. This is
to avoid situations where errors of omission can result in incorrect actions.

If you want to schedule jobs based on, for example, IMS services not available,
then define another Agent to represent this situation. For example, IMS.TEST
active might indicate that jobs that request binding to that Agent can be sched-
uled. If there is a class of jobs to be scheduled when IMS is not available, then
create another Agent, for example NOIMS.TEST, that is activated when
IMS.TEST is deactivated.

API Considerations

The requirement to externalize one aspect of the use of the program interface by
connecting it to actual JECL statements is to perform verification and be able to
reserve Agents before execution begins. This eliminates situations where,

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 25

Job Binding Services

through the API, a program requests the activation of an Agent that does not ex-
ist or is already active and has the attribute of UNIQUE.

Job Action Language

JAL provides facilities to help you ensure that JBS will function as intended in
your environment. When Binding management is done in JAL, the situation
where a JAL BIND request is made for an invalid Binding Agent (not defined)
should not occur. This normally represents either a JAL coding error or an acci-
dental deletion of an Agent. A JBS HOLD statement can be optionally added to
hold and requeue jobs when a JBS Environment or JBS Agent is undefined. Re-
fer to the JAL Reference Guide.

JBS includes facilities to eliminate those embarrassing moments. Note that
Agent verification techniques verify all Agents in your JAL, whether or not the
Agent is actually referenced by the JAL logic.

Verification of Agents Using the Language Processor

JBS provides Agent verification at JAL compile time. This requires access to the
Control File during JAL compilation. To verify Agents at compile time, include
the VERIFY parameter on the EXEC statement for the Language Processor:

//JALCOMP EXEC PGM=DTMJALP4,PARM=’VERIFY’

Any Agent that is not defined is flagged in the Binding Agent cross-reference re-
port produced by the Language Processor. Here is a sample:

26 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

THRUPUT MANAGER ACTION LANGUAGE TM/JBS BINDING AGENT CROSS REFERENCE REPORT

BINDING AGENT STATUS REFERENCES

AGENTA.UNDEF *NOT-DEFINED* 00006 00020
AGENTB.UNDEF *NOT-DEFINED* 00006 00023
AGENTX.DEFINED DEFINED 00009 00025 00026 00031 00035
AGENTY.DEFINED DEFINED 00010 00025 00028 00033 00035 00039

TM/JBS AGENTS: 4, DEFINED: 2, NOT-DEFINED: 2

DTM4565I *** WARNING *** TM/JBS BINDING AGENT(S) NOT DEFINED

Binding Agent Cross-reference Report

Verification Using the JAL VERIFY Command

If you do not have access to the Control File from the processor where the Lan-
guage Processor is run, you can use the JAL VERIFY command. It is advisable to
use this command just before doing any refresh.

The VERIFY command requests that a particular JAL internal text be verified,
to ensure that all the Agents are defined. Just before refreshing your JAL, issue
a command similar to this:

/JAL VERIFY AGENTS TM.PARMLIB(NEWJAL)

This results in a display resembling this example:

DTM4743I JAL VERIFY AGENT DISPLAY
DSNAME=TM.PARMLIB MEMBER=TESTJAL
--BINDING AGENT-- --STATUS---
AGENTA.UNDEF NOT-DEFINED
AGENTB.UNDEF NOT-DEFINED

TM/JBS AGENTS: 4, DEFINED: 2, NOT-DEFINED: 2

This display shows only those Agents that are not defined. You can display all
agents defined in the JAL being verified by using the DISPLAY keyword:

/JAL VERIFY AGENTS TM.PARMLIB(NEWJAL) DISPLAY

The display then shows all Agents:

DTM4743I JAL VERIFY AGENT DISPLAY
DSNAME=TM.PARMLIB MEMBER=TESTJAL
--BINDING AGENT-- --STATUS---
AGENTA.UNDEF NOT-DEFINED
AGENTB.UNDEF NOT-DEFINED
AGENTX.DEFINED DEFINED
AGENTY.DEFINED DEFINED

TM/JBS AGENTS: 4, DEFINED: 2, NOT-DEFINED: 2

Verification of ACTIVATE and DEACTIVATE Statements

The Job Action Language also provides facilities to verify JBS ACTIVATE and
DEACTIVATE statements. In this way, naming conventions can be established
and enforced. Also, you might want to restrict the jobs that can activate/deacti-
vate Agents.

This verification also applies to the use of the API.

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 27

Job Binding Services

A number of action statements are provided to facilitate the inserting of BIND
statements in JAL. You can:

JBS ADD BIND

Add a BIND statement to the job.

JBS BIND FROM_EXITS

Add a BIND statement defined in an exit.

JBS REPLACE BIND

Replace the BIND statement previously added.

JBS DELETE BIND

Delete the BIND statement previously added.

Activation/Deactivation of PERMANENT Agents

Binding Agents defined with the PERMANENT attribute, once activated, will re-
main in an active state regardless of the status of the system where they were ac-
tivated. In other words, a system failure or a system shutdown will not cause the
Agents to be deactivated. It must be done explicitly. This simplifies the manage-
ment of resources associate with a processor.

For example, in a multi-system environment, a PERMANENT Agent might de-
scribe where a given software product is (e.g a compiler in SYS2). You want that
Agent to continue its association with that processor, even when SYS2 is not
available. Only when you invoke backup procedures, or a similar arrangement,
do you want the Agent to be activated in another processor. So deactivating the
Agent in its normal host and activating it in another processor is a explicit action
(using commands).

Conditional Activation/Deactivation

Permanent Agents defined with the UNIQUE attribute can be controlled condi-
tionally, that is, based on whether the Agent was active or inactive before the re-
questing job started. This is accomplished with the COND keyword on the JBS
ACTIVATE or JBS DEACTIVATE statement. Its use is best illustrated with an
example:

• Assume AGENT.USEFUL is an Agent that represents a particular service.

• This service is offered during low-demand hours. AGENT.USEFUL is a Per-
manent Agent that is activated and deactivated with a command.

28 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

• Occasionally some library maintenance is done that momentarily precludes
the use of the service. The job that performs the maintenance cannot run
concurrently with jobs using the service.

• At job initiation, the maintenance job deactivates AGENT.USEFUL, so no
other job will be selected that uses that service.

At job termination, the maintenance job should reinstate the Agent to its original
status, but—what was the original status?

This is where the COND keyword is useful. In this case, a JBS ACTIVATE re-
quest with the COND keyword should be used:

//*+JBS ACTIVATE AGENT.USEFUL,COND

AGENT.USEFUL is then activated only if it was active before the job requested
the Agent to be deactivated.

Note that you must define AGENT.USEFUL using the UNIQUE attribute for a
Permanent Agent:

/JBS DEFINE AGENT.USEFUL PERMANENT UNIQUE

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 29

Job Binding Services

UDF Extensions for JBS

If the User Display Facility shows the JBS acronym for a job, a user can select
that acronym and open the JBS Window. A sample JBS Window is shown here.

The first line of the JBS Window is the Information Summary Line for the job.

The second line shows the job’s system affinity.

Subsequent lines list each Binding request affecting the selected job. For each
Binding request listed, the display indicates whether an Agent is being activated,
deactivated, or bound, whether the Agent is Job-related, and what the source of
the request is:

• PROC indicates that the request is contained in a JCL PROC.

• JECL indicates that the request comes from JECL for the job.

• INST indicates that the request came from an installation action such as
JAL.

30 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

------------------------ TM/User Display Services V6-------------------------
COMMAND INPUT ===> SCROLL ===> CSR

NP JOBNAME TYPE JNUM PRTY C POS RMT *---------- (Job List Display) ---------*
AP9002UP JOB 1145 12 E 1 |_ JC JB H |
PR4000PR JOB 1147 12 E 2 | Exempt |
GL3005TB JOB 1143 10 E 3 |_ JB JC JL H |
UPDATE JOB 1177 10 U 1 17 |_ JS H |
BMP202 JOB 1155 10 F 1 |_ JB |
BMP203 JOB 1156 10 F 2 |_ DC JB H |
COMPILE JOB 1139 10 D 1 20 |_ Awaiting Analysis D |
MYTEST JOB 1142 10 T 1 20 |_ Data Only |
TLT9 *------------------------ (JBS Display) ----------------------* |
TLT9 | BMP203(JOB01156) _ DC JB H | |
GL30 | Eligible Systems(SYS3) | |
RELO | Activates BMP.WEEKLY Job-Related INST | |

| Binds to BMP.UPDATE JECL |-------*
| Binds to BMP.SERVER PROC |

The JBS Display Window

Highlighted lines indicate that the Binding request described on that line causes
the selected job to be held.

Displaying Installation-defined Information

UDF allows you to define an ISPF panel that is displayed when a user places the
cursor on a JBS Agent name in the JBS Display Window and then hits ENTER.
The panel name is associated with the Agent by the PANEL keyword of the JBS
DEFINE or JBS REDEFINE operator commands:

/JBS DEFINE IMS … PANEL(OURPANEL)

OURPANEL must be a valid ISPF selection panel, since it is displayed using the
ISPF SELECT service.

UDF initializes several ISPF variables that you can use in your panel, as shown
in the table below.

ISPF Variables Initialized for Installation-defined UDF JBS Display

Name Type Length Description

DTMJOBNM Char 8 JES2 job name.

DTMJOBID Char 8 JES2 job ID.

DTMRACGR Char 8 RACF group (RACF only).

DTMRACUS Char 8 RACF user ID (RACF only).

DTMTSSUS Char 8 TSS user ID (TSS only).

DTMACFSI Char 8 ACF2 Source ID (ACF2 only).

DTMACFLI Char 8 ACF2 logon ID (ACF2 only).

DTMACFUI Char 24 ACF2 user ID (ACF2 only).

DTMJBNAM Char 17 JBS Agent name.

DTMJBVRB Char 10 JBS verb (ACTIVATE, BIND, DEACTIVATE).

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 31

Job Binding Services

Facilities Summary

JBS Operator Commands

Command Description

JBS ABANDON Removes a job from Job Binding Services control.

JBS ACTIVATE Activates a PERM Binding Agent.

JBS DEACTIVATE Deactivates a PERM Binding Agent.

JBS DEFINE (single) Defines a single Binding Agent.

JBS DEFINE (group) Define Agents from a file.

JBS DELETE Deletes a Binding Agent.

JBS DISPLAY Displays Agents, jobs, and their relationships.

JBS JECL Statements

Refer to Base Product: System Programming Guide

Statement Description Chapter

/*JBS ACTIVATE Activates a Binding Agent. 7

/*JBS BIND Request that the job be “bound” to an Agent. 7

/*JBS DEACTIVATE Deactivates a Binding Agent. 7

/*JBS MESSAGE Describes a system or application message
that triggers the activation or deactivation of a
Binding Agent.

7

32 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

JBS EXITS

Exit # Exit Name Description

Exit 19 JECL Statement inspection. This exit receives control for JECL statements
that the installation has defined to ThruPut
Manager using tables in the JES2 source mod-
ule.

TM7R1-7109 Chapter 2. Job Binding Services (JBS) Function 33

Job Binding Services

34 Chapter 2. Job Binding Services (JBS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 3. JBS: Incompatible Agents

This chapter explains the facilities provided to help you manage Binding Agent conflicts.

Incompatible Agents: The Problem

Incompatible Agents are Binding Agents that cannot be active simultaneously or
must be active on different JES2 systems.

Without a function to manage incompatibility, jobs that bind to incompatible
agents would be held by JBS with no chance of release and no external indication
that there is anything wrong. Fortunately, JBS provides a solution to this
problem: Incompatibility Categories.

Incompatibility Categories: The Solution

An Incompatibility Category is an attribute given an Agent at definition or
redefinition time. If you do not explicitly assign a Category, Agents default to a
Category that is compatible with all other Categories.

Through JBS commands, you can define the relationship of each Category to
every other Category. The definition indicates what action to take when a job
binds to Agents in different Categories.

The possible actions for Agents in incompatible Categories are:

• Fail the job, which generates messages explaining the incompatibility.

• Enter a warning message the job’s log and let the job proceed. This is
intended to let you warn users about future incompatibilities. If the Agents
are really incompatible, the job will not run until the incompatibility is
resolved.

• Ignore the incompatibility and allow the job to execute. The Agent definition,
through the special name $$DELETE, determines which incompatible
Agent is ignored.

Categories thus provide you with a means to prevent jobs from winding up in
limbo, and also relieve your users from the need to know which Agents are
incompatible.

TM7R1-7109 Chapter 3. JBS: Incompatible Agents 35

Job Binding Services

Usage And Examples

JBS provides 10 Categories numbered from 0 to 9. The Categories from 1-9 are
available for you to define as required to meet your needs. For ease of use, you
can give a name to each Category (except for Category 0) at definition time.
Category 0 is the default Category and cannot be assigned a name.

Assigning Categories

When you define an Agent, you can assign a Category by name or number:

/JBS DEFINE COBOL.COMPILER CATEGORY(3)
/JBS DEFINE DB2.PROD CATEGORY(PROD)

Categories can also be assigned or changed when you REDEFINE an Agent, but
such a change affects only subsequent jobs. Jobs already held or awaiting
execution are not affected.

Sample Category Definitions

Here are some sample Category definitions:

/JBS DEFINE 1 INCOMPAT(2W,3F)
/JBS DEFINE 2 INCOMPAT(3W) NAME(PROD)

In this example:

• Category 1 is defined as incompatible with Category 2. An attempt to bind to
Agents in both Categories results in a warning message.

• Category 1 is also defined as incompatible with Category 3. An attempt to
bind to Agents in both Categories results in the job being failed.

• Category 2 is defined as incompatible with Category 3, with a warning
message resulting.

Note that Category 2 is given a Category Name. Category Names allow you to
identify Categories with a name, which can be remembered more easily than just
a simple number.

Category 0: The Default

Every Agent belongs to one and only one Category. If you do not assign a
Category, the Agent belongs to Category 0. This Category is always compatible
with all other Categories and cannot be modified.

36 Chapter 3. JBS: Incompatible Agents TM7R1-7109

ThruPut Manager® System Programming Guide

Category Relationships

Agent Categories and their relationships can be represented in a simple table.
The table below shows the results of our sample definitions.

INCOMPATIBILITIES

0 1 2 3 4 5 6 7 8 9

C
A
T
E
G
O
R
I
E
S

1 W F

2 W

3

4

5

6

7

8

9

Note that there is no row for Category 0 in this table because Category 0 is
compatible with all other Categories by definition, therefore:

/JBS DEFINE 0 INCOMPAT(5W)

is an error.

You can define a Category to be incompatible with Category 0, however:

/JBS DEFINE 5 INCOMPAT(0W)

is valid. This illustrates that incompatibility definitions are not commutative. In
other words, the incompatibility arises from the fact that Category 5 Agents
cannot mix with Category 0 Agents, not the other way round. Knowing which
Category causes incompatibility can be useful when diagnosing problems.

TM7R1-7109 Chapter 3. JBS: Incompatible Agents 37

Job Binding Services

Conflicting Definitions

When two conflicting definitions are given, the last one encountered prevails.
For example:

/JBS DEFINE 3 INCOMPAT(4W)
/JBS DEFINE 4 INCOMPAT(3F)

results in the job being failed if it attempts to bind to Agents from both Category
3 and Category 4.

Self-incompatibility

A Category can be defined as incompatible with itself:

/JBS DEFINE 4 INCOMPAT(4F)

This limits the number of Category 4 Agents in a job to just one.

“Soft” Incompatibility: $$DELETE

You can ignore an incompatibility by using $$DELETE instead of an Agent
name. For example, assume that for performance reasons, you want some jobs to
run on a specific system. Your JAL therefore binds them to an Agent defined on
the preferred system:

/JBS ADD BIND(PREFER.SYS1,$$DELETE)

Before we explain the role of $$DELETE, let us further assume that some jobs
require a resource that sometimes is moved to another system. The users deal
with this by inserting a JECL statement that binds them to the resource:

/*JBS BIND MOVABLE.RESOURCE

The definitions for PREFER.SYS1 and MOVABLE.RESOURCE assign them to
Categories that allow you to adjust them to the situation:

/JBS DEFINE PREFER.SYS1 CATEGORY(1)
/JBS DEFINE MOVABLE.RESOURCE CATEGORY(2)

These Categories normally are compatible. When MOVABLE.RESOURCE is not
available on SYS1, however, you change the definition for Category 2:

/JBS DEFINE 2 INCOMPAT(1F)

Since you do not want jobs requesting MOVABLE.RESOURCE to fail simply
because you prefer that they run on SYS1, you make the incompatibility optional.
This is the purpose of the special Agent $$DELETE, shown earlier. If

38 Chapter 3. JBS: Incompatible Agents TM7R1-7109

ThruPut Manager® System Programming Guide

PREFER.SYS1 is incompatible with another Agent, $$DELETE causes the
incompatibility to be ignored by effectively deleting the BIND to PREFER.SYS1.

Multiple Agents In A Single Bind Statement

A JBS Bind statement can specify up to four Agents. Because these Agents are
treated as an OR condition, you can specify two or more incompatible Agents
together on the same Bind statement. Incompatibility is tested only across
individual Bind statements (across groupings on a compound BIND JECL
statement).

For the same reason, if a Bind statement contains at least one Agent that is
compatible with other Bind statements for the job, the statement is considered
compatible.

A Case Study

Acme Anvils, a well-known ThruPut Manager installation, uses Incompatibility
Categories to solve some of its processing problems. Here is how they do it.

First, the situation at Acme Anvils:

• The datacenter has two systems: SYS1 and SYS2

• SYS1 provides access to SAS software.

• SYS2 provides access to production DB2.

• SYS1 provides DB2 testing facilities. A new release of DB2 has arrived.

° During the morning, the old DB2 release is available on SYS1.

° During the afternoon, the new release of DB2 is available on SYS1.

• The situation is controlled with Binding Agents.

Four Agents are created:

SOFT.SAS

This Agent is active on SYS1 only, where SAS is licensed.

PROD.DB2

This Agent is active on SYS2 only

TEST.DB2

This Agent is active on SYS1 only between 8 and 1 o’clock.

TM7R1-7109 Chapter 3. JBS: Incompatible Agents 39

Job Binding Services

TEST.NEWDB2

This Agent is active on SYS1 only between 1 and 6 o’clock.

Acme wants to avoid jobs winding up in “limbo”, so they assign these Categories:

/JBS DEFINE PERMANENT SOFT.SAS CATEGORY(1)
/JBS DEFINE PERMANENT PROD.DB2 CATEGORY(2)
/JBS DEFINE PERMANENT TEST.DB2 CATEGORY(3)
/JBS DEFINE PERMANENT TEST.NEWDB2 CATEGORY(4)

The incompatibility definitions are as follows:

/JBS DEFINE 1 INCOMPAT(2F)
/JBS DEFINE 2 INCOMPAT(1F,3F,4F)
/JBS DEFINE 3 INCOMPAT(2F,4F)
/JBS DEFINE 4 INCOMPAT(2F,3F)

With the above definitions, JBS can manage the problems.

• SAS and production DB2 (Category 1 and 2) in the same job will not run since
they are provided in different machines, therefore:

/*JBS BIND SOFT.SAS
/*JBS BIND PROD.DB2

results in an incompatibility error and the job is failed.

• DB2 testing and DB2 production requests in the same job cannot run since
they are provided on different systems (Category 2 for production, 3 and 4 for
testing), therefore:

/*JBS BIND PROD.DB2
/*JBS BIND TEST.DB2

results in an incompatibility error. So does:

/*JBS BIND PROD.DB2
/*JBS BIND TEST.NEWDB2

• Testing of old and new DB2 in the same job will not run since the service is
provided during non-overlapping times (Categories 3 and 4), so:

/*JBS BIND TEST.DB2
/*JBS BIND TEST.NEWDB2

also results in an error; however, this is valid:

/*JBS BIND TEST.DB2
/*JBS BIND SOFT.SAS

40 Chapter 3. JBS: Incompatible Agents TM7R1-7109

ThruPut Manager® System Programming Guide

So is this:

/*JBS BIND TEST.NEWDB2
/*JBS BIND SOFT.SAS

Acme Anvils, by simply separating its Binding Agents into Incompatible
Categories, can thus ensure that its workload continues to run smoothly, and
that jobs requesting incompatible resources are failed rather than entering a
permanent and unexplained hold.

TM7R1-7109 Chapter 3. JBS: Incompatible Agents 41

Job Binding Services

42 Chapter 3. JBS: Incompatible Agents TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 4. JBS: Software Access Control (SAC)

This chapter introduces the ThruPut Manager Software Access Control extensions to JBS, describes the
concepts, and outlines the facilities available. Software Access Control table syntax and usage are explained.

Software Access Control Overview

Software Access Control (SAC) is a ThruPut Manager enhancement to control
licence compliancy. A popular use of the job routing ability of ThruPut Man-
ager’s Job Binding Services (JBS) function (provided with the TM/JBS compo-
nent) has been to route batch jobs to the system image(s) where a software
product to be executed is licensed. This mechanism, although effective, had two
shortcomings:

• It does not handle TSO.

• No “software licencing” view could be provided, either to the administrator
or to the end-user.

ThruPut Manager’s Software Access Control (SAC) enhances the existing
mechanisms to include TSO and to formalize the rules. An upgrade is planned
that will provide ISPF dialogs that you can use to request a comprehensive view
of how the licenced software is deployed at any particular time within the JES2
node. The mechanism is based on the Binding Agent architecture of JBS:

• For batch, jobs are automatically routed to the correct LPARs.

• For TSO, since commands cannot be routed dynamically like batch jobs can,
SAC prevents TSO invocation of software on system images that are not
licensed.

How SAC Works

SAC uses an installation-generated table (the SAC table) to identify the products
that are to be restricted to specific system images. The SAC table links requests
to JBS Binding Agents and lets you specify whether the request is failed or
allowed to proceed with a warning. You can control requests according to the
way they are made. The facilities for TSO are:

• ISPF_PANEL, to control the invocation of specific ISPF panels.

• ISPF_PGM, for programs that are invoked only from ISPF.

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 43

Job Binding Services

• ISPF_COMMAND, for TSO commands issued from ISPF.

• READY_COMMAND, for programs and commands invoked only from a TSO
READY prompt (not under ISPF).

• COMMAND, for programs and commands that can be invoked from a TSO
READY prompt or under ISPF.

The facilities for batch include matches for:

• Account.

• Accounting field.

• DD name.

• Dataset (DS) name.

• Step library name or LINKLIST.

• PROCSTEP name.

• STEP name.

For unusual circumstances, you can use TM DAL to determine the requirements
and set a global variable. This takes advantage of the fact that SAC has the
ability to test a GLOBAL variable similar to that which exists in JAL. You can
then use this variable to route the job accordingly. (See the JAL_GLOBAL
keyword.)

The SAC table is normally loaded during TMSS initialization, and links a
product to a TM/JBS Binding Agent. TMSS enhancement provides an
initialization statement and operator commands to manage the SAC table. It is
worth noting at this point that the scope of the SAC table is limited to the scope
of the JES2 subsystem that loads it.

For batch, you simply make a reference in JAL to request that the SAC table be
used to control the routing of the job. The normal JBS mechanisms do the rest.

• In the world of TSO, SAC gets control prior to invocation of a product or
execution of a command. If a link to one or more Binding Agents is defined in
the SAC table for the product or command, all Agents are queried. If at least
one of the Agents is active on the ambient system, invocation of the product is
allowed.

• If none of the Agents is active on the ambient system, but at least one of the
Agents is defined on any system, installation defined message(s) are issued.
Invocation of the product is denied or allowed to proceed with a warning,
depending on your settings.

44 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

• If none of the Agents linked to the product are defined, or if the query cannot
be answered (ThruPut Manager is unavailable, for example), an error
message is issued and the request is denied.

The SAC Table

The Software Access Control (SAC) Table is an external table. Facilities to
support external tables are described in:

• Base Product System Programming Guide “Chapter 15. Table (TBL)
Function.”

• Command Reference Guide (see TBL commands).

Table Coding Syntax

The SAC table can be coded in “free-flowing” format, meaning that they can
start in any column and allow any number of intervening blanks between
keywords. The conventions used are:

• Continuations are denoted by a “+” as the last character on a line.

• Comments must be enclosed within “/*” and “*/”.

• Blank lines are ignored.

• Uppercase letters and words are coded on the control statement exactly as
they appear in the format model, as are the following characters:

comma ,
parentheses ()

• Lower-case letters, words, and symbols appearing in the format model
represent variables for which specific information is substituted when the
parameter is coded. For example:

panelid

This means that you should substitute a valid ISPF panel identification for
the symbol “panelid”.

• Brackets [] are a special notation and are never coded. Brackets indicate that
the enclosed item is optional and you can omit it entirely. For example:

FAIL(msgid1[,msgid2,...])

is the format for the FAIL keyword. This indicates that when entering the
FAIL keyword, the second and subsequent message identifiers are optional.

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 45

Job Binding Services

• Where masking is allowed:

° The ‘?’ (question mark) masking character represents any single
character, but not the absence of a character.

° The ‘*’ (asterisk) masking character can appear at the beginning of a
string, the end, or both. It cannot be embedded in a string. It represents
any number of characters, including the absence of a character.

Table Structure

The SAC table is divided into sections by TYPE statements that indicate the type
of definitions that follow.

• You must include, in this order:

° TYPE(MSGID)

° TYPE(PRODUCT)

These statements define the product that is being controlled and the messages
issued to describe any control that is exercised.

• You must also include, in any order, one or more of:

° TYPE(ISPF_PANEL)

° TYPE(ISPF_PGM)

° TYPE(ISPF_COMMAND)

° TYPE(READY_COMMAND)

° TYPE(COMMAND)

° TYPE(BATCH_PGM)

These statements describe where Software Access Control is applied, and
what actions are taken.

• You can also include statements to modify the behavior of SAC itself:

° TYPE(JES2_NAMES)

This statement allows you to map JES2 system names to names of your
choice.

° TYPE(EXEMPT_USERS)

This statement allows you to specify TSO userids that are exempt from
SAC checking.

• A TYPE statement must precede any definitions for its type.

46 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

• Definitions are terminated by the next TYPE statement or by the end of the
SAC table.

• You cannot specify a particular TYPE more than once.

Associating Table Statements with a System

The FOR/ENDFOR statements allow you to share common SAC table
statements among multiple systems. Use this facility only when you have unique
statements for a particular system. The format is as follows:

FOR SMFID(smfid-list) | JES2_NAME(jes2name-list) | SYSNAME(systemname-list)
statement
statement
…

ENDFOR

smfid-list

Is a list of one or more SMFIDs, separated by commas, identifying the
systems that should honor the SAC table statements that follow.

jes2name-list

Is a list of one or more 1-4 character JES2 names, separated by commas,
identifying the systems that should honor the SAC table statements that
follow.

systemname-list

Is a list of one or more 1-8 character system names, separated by commas,
identifying the systems that should honor the SAC table statements that
follow.

To terminate the FOR condition, use the ENDFOR statement.

The rules for using the FOR group facility are as follows:

• A FOR group and its associated definitions must be contained entirely within
a TYPE statement.

• Statements that are not within a FOR group are always applicable regardless
of the system that processes them and are cumulative with statements
within the FOR group.

• Nested FOR groups are not allowed. If another FOR statement is
encountered before an ENDFOR terminates the previous group, it is an
error.

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 47

Job Binding Services

• The FOR and ENDFOR statements can begin in any column of the record.
Only columns 1 through 72 are scanned.

If the identification for the system processing a FOR group does not match the
FOR identification, the statements are ignored—almost. The statements receive
simple checking, so they must conform to SAC table syntax. Unless there is a
syntax error, however, these statements are totally ignored.

Mandatory TYPE Statements

TYPE(MSGID)

This section defines message(s) that might be issued as a result of SAC rules. For
products invoked in TSO, messages are issued to the user with PUTLINE, and
you can also log messages to SYSLOG. For products invoked in batch, you can
direct messages to any or all of JOBLOG, SYSLOG, and SYSMSGS. The syntax
is:

msgid(message-text)

msgid

Is 1-8 alphanumeric characters that identify the message text. This is used to
refer back to the message text in subsequent sections of the SAC table. The
identification must be unique.

message-text

Is up to 256 characters of message text, enclosed in apostrophes. To code an
apostrophe, use two consecutive apostrophes. If a message exceeds this
length after the variables are expanded, the message is truncated. If a
message results in a text line with all blanks, the message is not issued.

You can use the following inserts, which expand when the message is issued:

&AGENT

The associated JBS Binding Agent name(s).

&CURRENT

The JES2 system name under which the message is issued. Note that you
can use TYPE(JES2) to map the JES2 names to names that might be more
recognizable to users.

48 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

&ENTITY

The current program/panel/command with its TYPE, as specified by the
definition invoking the message. For example, this could expand to:

ISPF_COMMAND(IMS)

&JOBNAME

The job name, or for TSO, the userid.

&JOBNUMBER

The JES2 job number in the format JOBnnnnn or Jnnnnnnn, or the TSU
session id in the format TSUnnnnnor Tnnnnnnn.

&NAME

The current program/panel/command without its TYPE, as specified by the
definition invoking the message. For example, this could expand to:

IMS

&PARM

The current parameter field for ISPF SELECT service.

&PRODUCT

The current product name, as specified by the PRODUCT keyword in the
definition invoking the message.

&SYSTEMS

A list of JES2 system name(s) on which invocation is allowed. If invocation is
not permitted on any system, this variable expands to NONE. Note that you
can use TYPE(SYSTEM_NAMES) to map the JES2 names to names that
might be more recognizable to users.

Here are some sample message definitions:

MSG1(‘YOU CANNOT USE &PRODUCT ON &CURRENT’)
MSG2(‘&PRODUCT IS AVAILABLE ON &SYSTEMS’)
MSG3(‘&AGENT IS NOT ACTIVE ON &CURRENT AT THIS TIME’)

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 49

Job Binding Services

TYPE(PRODUCT)

In this section you define a particular product. You give the product a name, for
example COBOL, and define the Binding Agents that control the routing of jobs,
or in the case of TSO, that allow or disallow invocation. The syntax is:

product-name AGENT(name1[,name2,...])
[SAF_AUTHORITY(ALTER | CONTROL | READ | UPDATE)
[SAF_CLASS(class)
[SAF_RESOURCE(resource)
[FAIL_MSG(msgid1[,msgid2,...])]
[WARN_MSG(msgid1[,msgid2,...])]
[LOG_MSG(msgid1[,msgid2,...])]
[DISPLAY_ONLY]
[NOTES('Up to 50 characters of text')]

product-name

Identifies the product. The identification must be unique. Specifies up to 24
alphabetic, numeric, national, or underscore (_) characters.

AGENT(name1],name2,...])

The name of the Binding Agents to be associated with this product. Up to 4
agents can be specified. The agents must have been defined to JBS. Follow-
ing JBS conventions, this represents an 'OR' list of Agents.

SAF_AUTHORITY(ALTER | CONTROL | READ | UPDATE)

Indicates that you want to check the access authority.

ALTER

Checks whether the SAF user or group has total control over the
resource.

CONTROL

Checks whether the SAF user or group has CONTROL authority for the
resource.

READ

Checks whether the SAF user or group can open the resource only to
read. This is the default.

UPDATE

Checks whether the SAF user or group can open the resource to read or
write.

50 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

SAF_CLASS(class)

Specifies that SAF authorization checking is to be performed for a resource
of the specified class.

class

Is a 1-8 byte SAF resource class.

SAF_RESOURCE(resource)

Specifies that SAF authorization checking is to be performed for the specified
resource.

'resource'

Is a 1-255 byte SAF resource entity.

FAIL_MSG(msgid1[,msgid2,...])

This is the default message or messages to be issued when FAIL is requested
in a subsequent section. This keyword is applicable to TSO. The message(s)
are displayed (using PUTLINE) before the request is failed. You can specify
up to 24 message IDS, as defined in the TYPE(MSGID) section.

WARN_MSG(msgid1[,msgid2,...])

This is the default message or messages to be issued when WARN is
requested in a subsequent section. This keyword is applicable to TSO. The
message(s) are displayed (using PUTLINE) before the request proceeds. You
can specify up to 24 message IDs, as defined in the TYPE(MSGID) section.

LOG_MSG(msgid1[,msgid2,...])

This is the default message or messages to be issued when LOG is requested
in a subsequent section. This keyword applies to both batch and TSO. Use it
to log such things as access patterns and product usage to SYSLOG. You can
specify up to 24 message IDs, as defined in the TYPE(MSGID) section.

DISPLAY_ONLY

Use this keyword when access control is not exercised with SAC, but you
want the information about this product to be available to the administrator
for display using ISPF dialogs (available in a future release). If this keyword
is included, no other SAC action is taken.

NOTES('Up to 50 characters of text')

Use this keyword for annotations, which can be displayed in ISPF dialogs
(available in a future release).

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 51

Job Binding Services

Optional TYPE Statements

TYPE(section-type)

The section types described below are optional, but you must include at least one
of this form of TYPE statement. These types associate specific ways of invoking
licensed products and commands with a previously defined product.

The following section types control TSO:

ISPF_PANEL

Specifies the name of the panel that ISPF is about to select.

ISPF_PGM

Specifies the name of a program invoked within ISPF.

ISPF_COMMAND

Specifies the name of a command invoked from within ISPF.

� NOTE: The above types depend on the contents of the ISPF SELECT
statement used to invoke the product.

READY_COMMAND

Specifies a program or command invoked from a TSO READY prompt
(not from within ISPF).

COMMAND

A combination of ISPF_COMMAND and READY_COMMAND.

For each type, you can specify one or more associations of product or command
with JBS Binding Agent(s).

� Some products can be invoked in more than one way, therefore to
gain complete control you must specify an association for each
method that can be used to invoke the product.

For batch there is only one section type:

TYPE(BATCH_PGM)

52 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

TYPE Statements for SAC Control

TYPE(JES2_NAMES)

This optional section maps the JES2 system name into a meaningful name to be
used when expanding the message inserts &CURRENT and &SYSTEMS. For
example, if users refer to a system with the JES2 name SYS1 as the
PRODUCTION system, you can map SYS1 into the name PRODUCTION.

The format is:

jes2_name(user_name)

jes2_name

Is the 1-4 character JES2 name for the system to be mapped.

user_name

Is 1-24 alphabetic, numeric, or national characters specifying the new name.
You can include as many name mappings as you need, but each JES2 system
name can be specified only once.

TYPE(EXEMPT_USERS)

This optional section defines a list of TSO userids, separated by commas, that
are exempt from SAC checking. The syntax is:

userid1[,userid2,...,useridn]

Masking characters are allowed.

TSO Access Control

The general syntax for TSO is simple:

TYPE(section-type)

section-type

Specifies the type of invocation in TSO to which SAC control is applied, and
must be one of:

ISPF_PANEL
ISPF_PGM
ISPF_COMMAND
READY_COMMAND
COMMAND

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 53

Job Binding Services

The TYPE statement must be followed by one or more invocation descriptions,
which specify which product is to be controlled and what actions to take when
the product is invoked. The descriptions follow this format:

invocation_name PRODUCT(name)
[FAIL[(msgid1[,msgid2,..])] |
WARN[(msgid1[,msgid2,...])] |
NOT_ALLOWED(msgid1[,msgid2,...])]

[DISPLAY_ONLY]
[NOTES('Up to 50 characters of text')]
[LOG[(msgid1[,msgid2,...])]]

invocation_name

The identification panel name or command name. For example: IMS@USER.
Masking characters are allowed.

PRODUCT(name)

Is the name of the product, as previously defined in the TYPE(PRODUCT)
section.

PARM(parms) | PARMFLD(nn,parms)

Is the parameter field from the EXEC statement. PARM has the same mean-
ing as PARMFLD(1,parms).

Note: This description applies only to TYPE(ISPF_PGM)

parms

Is a string to be matched against a parameter field from the EXEC state-
ment. Masking characters are allowed.

nn

Is the field reference number of the parameter field and must be specified
as decimal digit(s) 1-50.

FAIL[(msgid1[,msgid2,...])]

If none of the Binding Agents are active on the ambient system, this keyword
causes the request to fail. The message IDs are optional and override the
default messages defined in the TYPE(PRODUCT) section. They are
displayed (using PUTLINE) before denying the request. You can specify up
to 24 message IDs, as defined in the TYPE(MSGID) section. This keyword is
mutually exclusive with NOT_ALLOWED and WARN.

WARN[(msgid1[,msgid2,...])]

54 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

If none of the Binding Agents are active on the ambient system, this keyword
allows the request to proceed, but with a warning. The message IDs are
optional and override the default messages defined in the TYPE(PRODUCT)
section. They are displayed (using PUTLINE) before the request is allowed.
You can specify up to 24 message IDs, as defined in the TYPE(MSGID)
section. This keyword is mutually exclusive with NOT_ALLOWED and
FAIL.

NOT_ALLOWED(msgid1[,msgid2,...])

This keyword restricts access to any user that is not exempted. This keyword
is mutually exclusive with FAIL and WARN.

� NOTE: You must specify at least one of FAIL, WARN,
NOT_ALLOWED, or LOG.

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 55

Job Binding Services

DISPLAY_ONLY

Use this keyword to indicate that access control is not exercised with SAC,
but you want the information about this product to be available to the
administrator for display using ISPF dialogs (available in a future release). If
this keyword is included, no other SAC action is taken.

NOTES('Up to 50 characters of text')

Use this keyword for annotations, which can be displayed in ISPF dialogs
(available in a future release).

LOG[(msgid1[,msgid2,...])]

This keyword can be used for logging information to evaluate access
patterns, product usage, etc. in SYSLOG. The message IDs are optional and
override the default messages defined in the TYPE(PRODUCT) section.

Notes:

• The entries in each section are sorted alphabetically, most specific first.
Entries containing masking characters follow entries without masking.

• A CLIST or REXX that is implicitly invoked with a proceeding “%” is not
eligible for JBS Agent verification for any of the “COMMAND”table sections.

• EXEC (or EX) commands are not eligible for JBS Agent verification.

• TSOEXEC, CALL and TEST are special cases for TSO commands. The
command after TSOEXEC and the member name of a CALL or TEST
command are the values that are checked against the SAC table.

Batch Access Control

Batch access control requires that you indicate that SAC binding applies to the
job. To do this, you must use the JAL statement:

JBS BIND FROM_SAC

This causes ThruPut Manager to use the batch section of the SAC table. See the
full syntax description in the JAL Reference Guide.

The syntax for the statement that indicates the start of the batch section is:

TYPE(BATCH_PGM)

This statement must be followed by one or more invocation descriptions that
specify which product is to be controlled, and what actions to take when the
product is invoked.

56 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

The descriptions follow this format:

program_name PRODUCT(name)
[ACCT(acctfld) | ACCTFLD(nn,acctfld)]
[DDNAME(ddname)]
[DISPLAY_ONLY]
[DSNAME(dsname)]
[EXEC_ACCT(acctfld) | EXEC_ACCTFLD(nn,acctfld)]
[EXEC_PARMDD]
[JAL_GLOBAL(global)]
[JOBLOG_MSG(msgid1,[msgid2,...])]
[JOBNAME(jobname)]
[LIBRARY(libname) | LINKLIST)]
[NOT_ALLOWED(msgid1[,msgid2,...])]
[NOTES('Up to 50 characters of text')]
[PARM(parms) | PARMFLD(nn,parms)]
[PROCSTEP(procstepname)]
[SCHENV(envname | $NO_SCHENV)]
[STEPNAME(stepname)]
[SYSAFF_ANY]
[SYSLOG_MSG(msgid1[,msgid2,...])]
[SYSMSGS_MSG(msgid1[,msgid2,...])]

All matches specified represent “and” conditions. For example, if DDNAME and
DSNAME are specified, both must be matched to satisfy the identification of a
particular program.

program_name

Is the 1-8 character name of the program that is being executed, for example:
LC370B. Masking characters are allowed. If more than one mask creates a
match, the most specific mask is used.

PRODUCT(name)

Is the name of the product, as previously defined in the TYPE(PRODUCT)
section.

ACCT(acctfld) | ACCTFLD(nn,acctfld)

Is the accounting information from the JOB statement. ACCT has the same
meaning as ACCTFLD(1,acctfld).

acctfld

Is a string to be matched against a accounting related field from the JOB
statement. Masking characters are allowed.

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 57

Job Binding Services

nn

Is the field reference number of the accounting related field and must be
specified as decimal digit(s) 1-68.

DDNAME(ddname)

Is the 1-8 name of a DD statement in the step that is attempting to run the
product. Masking characters are allowed.

DISPLAY_ONLY

Use this keyword to indicate that access control is not exercised with SAC,
but you want the information about this product to be available to the
administrator for display using ISPF dialogs (available in a future release.
This might apply, for example, when detection of a product in batch requires
logic that is more complex than is available in SAC. You can make the
determination in DAL/JAL instead.

� If this keyword is included, no other SAC action is taken.

EXEC_ACCT(acctfld) | EXEC_ACCTFLD(nn,acctfld)

Is the accounting information coded on the EXEC statement for the product.
EXEC_ACCT has the same meaning as EXEC_ACCTFLD(1,acctfld).

acctfld

Is a string to be matched against a accounting related field from the JOB
statement. Masking characters are allowed.

nn

Is the field reference number of the accounting related field and must be
specified as decimal digit(s) 1-68.

Is the PARMDD information coded on the EXEC statement for the prod-
uct. It is used to recognize programs that have PARMDD= specified.
(New with z/OS 2.1.)

DSNAME(dsname)

Is the 1-44 dataset name of a dataset referred to in the step that is
attempting to run the product. Masking characters are allowed.

JAL_GLOBAL(global)

Specifies the name of a GLOBAL variable that can be set in TM DAL and
tested by SAC. This provides SAC with the same ability to test a GLOBAL

58 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

variable that exists in JAL. The variable must be set to TRUE to satisfy the
identification of the program.

JOBLOG_MSG(msgid1[,msgid2,...])

This keyword can be used to direct messages to the JOBLOG during job
analysis. Note that the listed messages are issued for every matching
reference to the product.

JOBNAME(jobname)

Is the 1-8 character job name from the JOB statement. Masking characters
are allowed.

LIBRARY(libname)

Is a 1-44 dataset name to be matched with either a JOBLIB or STEPLIB
dataset name, if present in the step that is attempting to run the product. If
there is both a JOBLIB and a STEPLIB, the STEPLIB takes precedence.
Masking characters are allowed. This keyword is mutually exclusive with
LINKLIST.

LINKLIST

Tests whether a JOBLIB or STEPLIB is present in the step that is
attempting to run the product. This keyword is mutually exclusive with
LIBRARY.

NOT_ALLOWED(msgid1[,msgid2,...])

This keyword indicates that any batch job referring to this product is not
allowed to execute.

NOTES('up to 50 characters of text')

Use this keyword for annotations, which can be displayed in ISPF dialogs
(available in a future release).

PARM(parms) | PARMFLD(nn,parms)

Is the parameter field from the EXEC statement. PARM has the same
meaning as PARMFLD(1,parms).

parms

Is a string to be matched against a parameter field from the EXEC
statement. Masking characters are allowed.

nn

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 59

Job Binding Services

Is the field reference number of the parameter field and must be specified
as decimal digit(s) 1-50.

PROCSTEP(procstepname)

Is the 1-8 character step procedure name on the EXEC statement. Masking
characters are allowed.

SCHENV(envname | $NO_SCHENV)

This keyword allows the setting of a scheduling environment when an entry
is located, or ignore a SCHENV keyword coded on the JOB statement.

envname

A valid scheduling environment name, which can be 1-16 alphanumeric, na-
tional ($, #, @) characters, or the underscore (_). Underscores (_) must be
imbedded.

$NO_SCHENV

A reserved word that indicates that a SCHENV keyword coded on the JOB
statement is to be ignored.

STEPNAME(stepname)

Is the 1-8 character stepname of the statement that is attempting to run the
product. Masking characters are allowed.

SYSAFF_ANY

Specifies that SAC should duplicate the effect of a JBS SET SYSAFF(ANY)
statement in JAL.

SYSLOG_MSG(msgid1[,msgid2,...])

This keyword can be used to direct messages to the SYSLOG during job
analysis. Note that the listed messages are issued for every matching
reference to the product.

SYSMSGS_MSG(msgid1[,msgid2,...])

This keyword can be used to direct messages to SYSMSGS during job
analysis. Note that the listed messages are issued for every matching
reference to the product.

Note:

• The entries are sorted alphabetically, most specific first. Entries containing
masking characters follow entries without masking.

60 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

Sample SAC Table

The following example shows how a SAC table for TSO might look for your
installation.

In this hypothetical installation, they have the following situation:

• Three LPARS.

• They are known to JES2 as SYS1, SYS2, and SYS3.

• For historical reasons, users know these systems as the OLD system, the
PRODUCTION system, and the TEST system, respectively.

• The COBOL compiler is licenced on SYS1 .

• New implementations of COBOL are tested on SYS2. If SYS1 is not available
then SYS2 runs as backup for SYS1. When this happens, no testing is
allowed.

• Licenced product PRODX is to run on SYS1 and SYS2 for batch, and only on
SYS1 for TSO.

• Licenced product PRODY is only available on SYS3.

• Product PRODZ is licenced for all LPARS, but the administrator wants to see
its usage pattern to see if he can reduce the number of licences.

• Product GONE is to be replaced by a PC-based offering and will not be
available after November 30th.

• There are a number of user IDs for administration purposes that are to be
exempted.

• This list for SYS3, the TEST system, is expanded to include the user IDs for
the development team.

The following example shows an implementation of the SAC table to handle the
above requirements.

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 61

Job Binding Services

62 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

/* SOFTWARE ACCESS CONTROL TABLE */

TYPE(MSGID)
MSG1(‘USR001I &PRODUCT not licensed for system &CURRENT’)
MSG2(‘USR002I &PRODUCT cannot be used on system &CURRENT ’)
MSG3(‘USR003I Please use one of the following systems: &SYSTEMS ’)
MSG4(‘USR004I COBOL testing is available on: &SYSTEMS’)
MSG5('USR005I Licenced Software routing in effect for: &PRODUCT ')
MSG6('USR006I Invocation via TSO command not allowed')
MSG7('USR007I This product will not be available after Nov 30th ')
MSG8('USR008I For a PC-based replacement contact your LAN admin ')
MSG9('USR009I &JOBNUMBER &JOBNAME REFERS TO &PRODUCT')

/* PRODUCT DEFINITION SECTION - MUST FOLLOW THE MESSAGE SECTION */
TYPE(PRODUCT)

COBOL /* IDENTIFIES PRODUCTION COBOL */ +
NOTES('COBOL PRODUCTION') +
AGENT(COBOL.PRIMARY,COBOL.SECOND) +
FAIL_MSG(MSG1) /* MESSAGE FOR TSO USERS */

COBOL_NEW /* IDENTIFIES NEW VERSION OF COBOL TO TEST */ +
NOTES('COBOL TEST') +
AGENT(COBOLT.PRIMARY) +
FAIL_MSG(MSG2,MSG4)

PRODXB /* IDENTIFIES PRODUCT X RULES FOR BATCH */ +
NOTES('PRODUCTX BATCH') +
AGENT(PRODXB.PRIMARY,PRODXB.SECOND)

PRODXTSO /* IDENTIFIES PRODUCT X RULES FOR TSO */ +
NOTES('PRODUCTX FOR TSO') +
AGENT(PRODXTSO.PRIMARY) +
FAIL_MSG(MSG2,MSG3)

PRODY +
NOTES('PRODUCTY') +
AGENT(PRODY.PRIMARY) +
FAIL_MSG(MSG1)

PRODZ /* FOR THIS PRODUCT ONLY LOGGING FOR USAGE IS IN EFFECT */ +
NOTES('PRODUCTZ') +
AGENT($DUMMY) +
LOG_MSG(MSG9)

Sample Software Access Control (SAC) Table

TM7R1-7109 Chapter 4. JBS: Software Access Control (SAC) 63

Job Binding Services

GONE +
AGENT($DUMMY) +
WARN_MSG(MSG7,MSG8)

/* THIS SECTION PROVIDES SYSTEM NAME MAPPING */

TYPE(JES2_NAMES)
SYS1(OLD)
SYS2(PRODUCTION)
SYS3(TEST)

/* THIS SECTION ASSOCIATES PANELS, COMMANDS AND PROGRAMS WITH PRODUCTS */
/* THE TYPE STATEMENTS CAN BE IN ANY ORDER */

/* EACH PARTICULAR TYPE CAN APPEAR ONLY ONCE */

TYPE(BATCH_PGM)
IGYCRCTL PRODUCT(COBOL) JOBLOG_MSG(MSG5)
IGYNEW PRODUCT(COBOL_NEW) JOBLOG_MSG(MSG5)
STATS* PRODUCT(PRODXB) JOBLOG_MSG(MSG5) +

DDNAME(STAT*)
RMS* PRODUCT(PRODY) JOBLOG_MSG(MSG5) +

DDNAME(RMS*) +
DSNAME(RMS*.*)

AAWW* PRODUCT(PRODZ) SYSLOG_MSG(MSG9)
GONE* PRODUCT(GONE) JOBLOG_MSG(MSG7,MSG8)

TYPE(ISPF_PANEL)
IGYFP02 PRODUCT(COBOL) FAIL
IGYFP02T PRODUCT(COBOL_NEW) FAIL
GONE* PRODUCT(GONE)
STATP02 PRODUCT(PRODXTSO) FAIL
RMS?P01 PRODUCT(PRODY) FAIL
AAWW?P03 PRODUCT(PRODZ) LOG

TYPE(ISPF_PGM)
IGYCRCTL PRODUCT(COBOL) FAIL
IGYNEW PRODUCT(COBOL_NEW) FAIL
STATS* PRODUCT(PRODXTSO) FAIL

Sample Software Access Control (SAC) Table (Continued)

64 Chapter 4. JBS: Software Access Control (SAC) TM7R1-7109

ThruPut Manager® System Programming Guide

RMS* PRODUCT(PRODY) FAIL
AAWW* PRODUCT(PRODZ) LOG

TYPE(ISPF_COMMAND)
STATCALC PRODUCT(PRODXTSO) FAIL

TYPE(READY_COMMAND)
STATCALC PRODUCT(PRODXTSO) NOT_ALLOWED(MSG6)

TYPE(COMMAND)
COBOL PRODUCT(COBOL) FAIL
COBOLNEW PRODUCT(COBOL_NEW) FAIL
RMSCALL PRODUCT(PRODY) FAIL
AAWWLOAD PRODUCT(PRODZ) LOG

TYPE(EXEMPT_USERS) /* IDENTIFY SPECIAL USER ID’S THAT ARE EXEMPT */
FOR JES2_NAME(SYS3)

DEV*
ENDFOR

USER01,BACKUP*,APP??XY

Sample Software Access Control (SAC) Table (Continued)

Chapter 5. JBS: Environment Services

This chapter describes TM/JBS Environment Services. It explains basic concepts and discusses how JBS Envi-
ronments can replace and extend the function provided by IBM's Resource Affinity Scheduling.

Prerequisites

This chapter assumes that you are already familiar with the latest version of the
IBM document:

• z/OS Planning: Workload Management

JBS Environments are intended to provide extended capabilities to users of IBM
scheduling environment (SCHENV) support. If you are not already using sched-
uling environments, TM/JBS Binding Agents are more suitable and more flexi-
ble.

What is a JBS Environment?

A JBS Environment, similar to an IBM scheduling environment, is a list of Re-
source Elements and their desired State. When all Resource Elements for an En-
vironment are set to the desired state, the JBS Environment is available and jobs
requiring that Environment are eligible to run.

A job is assigned a JBS Environment through JAL or JECL. JBS Environments
are roughly equivalent to scheduling environments, but provide more flexibility.

JBS Environments vs. Scheduling Environments

The scope of SCHENV differs from that of JBS. The IBM implementation makes
a scheduling environment and its constituent Resource Elements known through-
out the SYSPLEX. The scope of JBS Environment Agents and Resource Ele-
ments is that of the JESplex.

Users either have to specify SCHENV or accept the single default that can be as-
sociated with the job's class. Users do not have to specify JBS Environments,
since they are normally applied to the job through JAL directives. JBS Environ-
ments can be requested through a JECL statement, but the request is overridden
if an Environment is provided by JAL.

TM7R1-7109 Chapter 5. JBS: Environment Services 65

Job Binding Services

Only one SCHENV can be associated with a job. You can specify up to four JBS
Environments, which are treated like an OR condition, therefore any of the spec-
ified Environments can satisfy the requirement.

What Is a Resource Element?

A Resource Element is a logical entity that can represent any characteristic of
the environment that you wish to use to schedule work. This is the same basic
definition that a Resource Element has in a scheduling environment (SCHENV).

JBS Resource Elements vs. SCHENV Resource Elements

IBM Resource Elements in a scheduling environment can have one of three
states: ON, OFF, and RESET. The significance of the ON and OFF states is arbi-
trary, and the only means of providing some context is by your choice of the Ele-
ment name.

JBS Resource Elements allow you to name up to 8 states. For example, you could
name a state for each day of the week. Because these are all states of a single Re-
source Element, there is no chance of inadvertently setting more than one state
on at a time. This simplifies definitions and environment management, as well as
providing a meaningful name for the state. Like SCHENV Resource Elements, a
JBS Resource Element can be set to a different state on each one of multiple sys-
tems, but only one specific state on any one system.

JBS Resource Elements can be combined in an Environment using both AND
and OR conditions. SCHENV Resource Elements are limited to just the AND
condition.

SCHENV Resource Elements let you define a resource list that has conflicting
combinations of resources and is therefore impossible to implement. ThruPut
Manager checks for conflicts in JBS Resource Elements and if any are found,
prompts you to correct such a list.

JBS Resource Elements provide flexibility not found with SCHENV Resource El-
ements. Operators control SCHENV Resource Element states on each system,
but JBS Resource Elements also let jobs set the state, either at step or job termi-
nation or as the result of a message by using the Application Program Interface
(API). SCHENV Resource Elements automatically revert their state to RESET
after an IPL, but JBS Resource Elements can either be RESET or, optionally,
maintain the state that was set before the IPL.

66 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

Components to Support JBS Environments

The components provided to support JBS Environments are listed below.

JBS Environment Definition ISPF Dialog

JBS Environments are defined, managed, and installed using an ISPF dialog,
described later in this document.

JAL for JBS Environments

JAL is used to apply JBS Environments, while Resource Elements are manipu-
lated with operator commands and JECL. JAL includes the following facilities to
support JBS Environments:

• The SET SCHENV Action statement supports the $NO_SCHENV reserved
word. When $NO_SCHENV is specified, the SCHENV keyword on the JOB
statement is nullified.

This allows conversion from SCHENV to JBS Environments without any
JCL changes.

• A JAL statement allows you to request one or more JBS Environments for a
job:

JBS NEEDS ENVIRONMENT(environ1[,environ2,environ3,environ4])

Multiple Environment requests are treated as a logical OR, that is, any one of
the Environments can satisfy the request.

A request for an environment can be negated by the statement:

JBS NEEDS NO_ENVIRONMENT

If an Environment has been requested through JECL, any setting made in
JAL takes precedence.

• A JAL statement allows you to control the action taken when a job is submit-
ted that attempts to request a non-existent Environment:

JBS HOLD UNDEFINED_ENVIRONMENTS(YES)

If this statement is present, jobs requesting unavailable Environments are
requeued in the Job Analysis Class and placed in the MHS_TM hold category
ENVIRONMENT, as described below.

• JAL Descriptors allow you to determine information about the JBS Environ-
ment of a job:

TM7R1-7109 Chapter 5. JBS: Environment Services 67

Job Binding Services

° $JBS_NEEDS# is a range Descriptor that allows you to check for the
presence of a /*JBS NEEDS JECL statement.

° $JBS_SET# is a range Descriptor that returns the number of /*JBS SET
JECL statements.

° $JBS_NEEDS is a unique Descriptor that allows you to check whether a
specific JBS Environment has been requested.

° $JBS_SET is a unique Descriptor that allows you to check whether s spe-
cific state has been set.

° $LIST_JBS_NEEDS is a Display Variable that allows you to display in a
message the requested JBS Environment.

° $LIST_JBS_SET is a Display Variable that allows you to display in a mes-
sage the states that have been set.

Additionally, the Language Processor parameter VERIFY performs a check to
determine whether the JBS Environments referenced in the JAL have been de-
fined on the system on which the Language Processor is running.

JECL for JBS Environments

ThruPut Manager JECL statements are used to manipulate Resource Elements,
although you can also use JECL to request a JBS Environment:

/*JBS NEEDS environ1[,environ2,environ3,environ4]

� If JAL assigns a JBS Environment, any JECL request is ignored.

A request for multiple Environments is treated as a logical OR, that is, any of the
requested Environments can satisfy the request.

You can use JECL to set the state of Resource Elements:

/*JBS SET resource-name state [AT=timing]

These statements can also be triggered through the API interface support for
JBS. A complete syntax description of these statements is provided later in this
document. For more information about the API interface, see “Chapter 10.
Application Program Interface (API).”

MHS for JBS Environments

MHS supports a new type of MHS_TM hold category, qualified by ENVIRON-
MENT(environment-name).

When an existing set of Environment definitions is replaced, some jobs might
have /*JBS NEEDS statements that refer to Environments or Resource Ele-

68 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

ments that have been removed. ThruPut Manager identifies such jobs and auto-
matically requeues them to the Job Analysis class, but in MHS_TM hold
category, qualified by ENVIRONMENT(environment-name). MHS_TM com-
mands allow you to display and/or release these jobs as a group.

Operator Commands for JBS Environments

Operator commands are provided to control the state of Resource Elements, ver-
ify that the definition is correct, and to display the state of Environments:

• /JBS SET sets the state of a Resource Element.

• /JBS RESET lets you set a Resource Element to the RESET state.

• The /JBS DISPLAY ENV command displays JBS Environment details and
Resource Element details.

• The /MHS_TM DISPLAY command can now display jobs placed in MHS_TM
hold and qualified by Environment name.

• The /MHS_TM RELEASE command can release jobs that have been placed
in MHS_TM hold and qualified by Environment name.

� Note that if a job is placed in the TM_HOLD category ENVI-
RONMENT and the JBS Environment for which it is held is
then defined, the job is released automatically.

• The /JAL VERIFY command can verify that JBS Environments that are ref-
erenced in JAL are defined.

Implementation

To implement JBS Environments, you must:

1. Define Environments.

2. Define Resource Elements.

3. Install the JBS Environment definition.

4. Add JECL to jobs requesting specific Environments, and/or add JAL to add
Environment requests to jobs. Optionally, add a JBS HOLD statement for
errors.

5. Implement operating procedures to ensure that Resource Elements are al-
ways set to the desired state.

TM7R1-7109 Chapter 5. JBS: Environment Services 69

Job Binding Services

6. Optionally, use the JAL statement SET SCHENV($NO_SCHENV) to re-
move the SCHENV keyword if it is coded on the JOB statement.

Defining JBS Environments and Resource Elements

JBS Environments and their Resource Elements are defined using an ISPF dia-
log. The definition is then installed from the dialog. These definitions exist until
a new definition is installed, or until JBS is cold started.

JBS Environment definitions are created using ThruPut Manager ISPF services.
To invoke ISPF Services, use the command:

TMISPF

For a complete description of TMISPF, see the chapter “ThruPut Manager ISPF
(TMISPF) Services” in the Base Product: System Programming Guide.

The TMISPF command takes you to the Main Lobby, as shown above.

70 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- GoTo Help
------------------------------- ThruPut Manager -------------------------------

Main Lobby
Command ===> 2

1 Applications - TM Application Dialogs

2 Systems Programmer - TM Systems Programmer Main Menu

3 Operator Commands - TM Operator Commands Interface

4 Automation Services - TM Automation Services Dialog

X Exit - Exit TM Main Lobby

The TMISPF Main Lobby

To define JBS Environments, select 2, the TM Systems Programmer Main
Menu, which looks like this :

Selecting 3, JBS Environment Definition and Management, opens a screen that
provides you with three choices, as shown below.

TM7R1-7109 Chapter 5. JBS: Environment Services 71

Job Binding Services

- GoTo Help
------------------------------- ThruPut Manager -------------------------------

Systems Programmer Menu

Command ===> 3

1 CFMU - Control File Management Utility

2 JAL Test - Job Action Language Test Facility

3 JBS Environments - JBS Environment Definition and Management

X Exit - Exit Systems Programmer Menu

The Systems Programming Services Menu

From the Creation Menu:

• Option 1 reads an existing JBS Environment definition from a sequential
dataset or PDS member. You are prompted to enter the name of a sequential
dataset or PDS member.

• Option 2 extracts the current JBS Environment from the ambient system.

• Option 3 allows you to create a new JBS Environment from scratch.

The following descriptions are intended to demonstrate one way to create and
maintain a JBS Environment and associated Resource Elements. They therefore
do not attempt to describe the complete JBS Environment Services dialog. For
full details, consult the online help.

Also, you should review the section following this example for notes and consid-
erations concerning JBS Environment definitions.

72 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- Help
------------------------- TM/JBS Environment Services -------------------------

Creation Menu
Command ===>

1 Read an existing JBS Environment definition

2 Extract the active JBS Environment

3 Create new JBS Environment definition

X Exit

The JBS Environment Services Creation Menu

Creating Resource Elements

When you select 3 from the Creation Menu, you are presented with two choices,
as shown below:

You can choose to define either a JBS Environment or a Resource Element first.
Although an Environment requires Resource Elements, the JBS Environment di-
alog provides the ability to define them when they are needed. Usually, however,
it is easier to determine which Resources you want to manage first, then decide
how to combine them to form an Environment. We therefore begin this example
by selecting item 2 Manage Resources.

TM7R1-7109 Chapter 5. JBS: Environment Services 73

Job Binding Services

- File GoTo Help
------------------------- TM/JBS Environment Services -------------------------

Main Menu
Command ===>

Environment definitions created from scratch

No Environments Defined
No Resources Defined

1 Manage Environments

2 Manage Resources

The JBS Environment Services Creation Menu

The first time you manage Resources, the JBS Environment dialog prompts you
to add a Resource Element, as shown here:

Use the N line command to add a Resource Element. You can add as many Re-
source Elements as you need to manage your JBS Environment.

74 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- File GoTo Help
------------------------- TM/JBS Environment Services -------------------------

Manage Resources Line 1 of 1
Command ===> Scroll ===> CSR

Line Commands: N - New D - Delete M - Modify C - Copy
B - Browse X - Xref

No Resources exist. Use Line Command N to Create a Resource
- Resource Name--- Used ---Reset--- --Resource Description----------
.

The JBS Environment Services Manage Resources Window

Name the Resource Element with 1 to 16 alphabetic, numeric, or special (@, $
and #) characters . The underscore character (_) is also permitted, but the name
cannot start or end with an underscore.

You can provide up to 32 characters of description for your Resource.

A Resource Element retains its state across IPLs, JES2 restarts, and ThruPut
Manager restarts unless you indicate otherwise. To have the Resource Element
placed in the RESET state after one or more of these events, place an X in the
appropriate field(s).

A Resource Element must have states defined. Simply enter a state name of 1 to
8 alphabetic, numeric, or special (@, $ and #) characters . The underscore char-
acter (_) is also permitted, but the name cannot start or end with an underscore.
Here is a sample dialog with several states defined:

Once you have defined a Resource Element and its states, you can use it in a JBS
Environment definition.

TM7R1-7109 Chapter 5. JBS: Environment Services 75

Job Binding Services

- Help
------------------------- TM/JBS Environment Services -------------------------

Create a Resource Line 1 of 6 State added
Command ===> Scroll ===> CSR

Line Commands: D - Delete X - Xref

Resource : DAY_____________
Description : Day of week_____________________

Reset Resource at IPL: _ JES: _ TM: _

To ADD a State to this Resource
Type State name Sun_____ and Press Enter

Press END to confirm modifications
Press CANCEL to cancel all modifications made

- State In Use
. FRI
. MON
. SAT
. THU
. TUE

Adding a Resource Element

Creating JBS Environments

If there are no JBS Environments defined when you select item 1 Manage Envi-
ronments from the Main Menu of the JBS Environments dialog, you are
prompted to create one with the N line command:

Name the Environment with 1 to 16 alphabetic, numeric, or special (@, $ and #)
characters. The underscore character (_) is also permitted, but the name cannot
start or end with an underscore.

You can provide up to 32 characters of description for your Environment.

76 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- File GoTo Help
------------------------- TM/JBS Environment Services -------------------------

Manage Environments Line 1 of 1
Command ===> Scroll ===> CSR

Line Commands: N - New D - Delete M - Modify C - Copy B - Browse
No Environments exist. Use Line Command N to Create an Environment
- --Environment-- Log ---Description—
.

The JBS Environment Services Manage Environments Window

You can request that ThruPut Manager log events relating to this Environment
in jobs that refer to the Environment. Log entries are sent to the system log by
entering an X to select the LOG attribute.

An Environment requires one or more Resource Elements to be set to a specific
state. You can add Resource Elements with the A or B line command.

TM7R1-7109 Chapter 5. JBS: Environment Services 77

Job Binding Services

- Help
------------------------- TM/JBS Environment Services -------------------------

Modify Environment Line 1 of 2
Command ===> Scroll ===> CSR

Line Commands: D - Delete T - Toggle operator
A - Insert After B - Insert before

Environment : WEEKLY_BACKUP
Description : Runs Friday nights______________

Attributes - LOG: _

Press END to confirm modifications
Press CANCEL to cancel all modifications made

- Op Resource RqState Resource Description
a

The JBS Environment Services Modify Environments Window

When the Select Resource window opens, you are presented with a list of the de-
fined Resource Elements to choose from. Note that the N line command allows
you to define a new Resource Element if that is necessary.

78 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- Help

+------------------------------ Select Resource ------------------------------+
| Line 1 of 2 |
| Command ===> Scroll ===> CSR |
| |
| To add a resource to the environment definition |
| select ONE resource with an S and press ENTER |
| |
| OTHER Line Commands: N - New D - Delete M - Modify |
| |
| - Resource Name--- Used ---Reset--- --Resource Description---------- |
| s DAY Day of week |
| . SHIFT YES IPL - - Operating schedule |
| *** |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

Selecting a Resource Element

Once you have selected a Resource Element, you must select a state for it. The
dialog opens the Select State window for this purpose:

You are then returned to the Select Resource window, from which you can select
more Resource Elements if desired.

TM7R1-7109 Chapter 5. JBS: Environment Services 79

Job Binding Services

- Help
+------------------------------ Select Resource ------------------------------+
| Line 1 of 2 |
| C +------------------------- Select State -------------------------+ CSR |
| | Line 1 of 7 | |
| T | Command ===> Scroll ===> CSR | |
| s | | |
| | Resource : DAY | |
| O | Description : Day of week | |
| | | |
| | To add the required state to the definition | ---- |
| | select ONE state with an S and press ENTER | |
| | | |
| * | | ****** |
| | - State In Use | |
| | s FRI | |
| | . MON | |
| | . SAT | |
| | . SUN | |
| | . THU | |
| | . TUE | |
| | . WED | |
| | ** | |
| | | |
+---+--+--------+

Selecting a State

The example below shows that two Resource Elements are used to define the En-
vironment:

Note that the default operator (shown in the Op column) is AND, indicating that
both Resource Elements must be set be set to their required state (shown in the
RqState column) before jobs needing this Environment are eligible to run. You
can toggle the operator to OR with the T line command. All ORs are evaluated
before any AND is applied.

80 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- Help
------------------------- TM/JBS Environment Services -------------------------

Modify Environment Line 1 of 2
Command ===> Scroll ===> CSR

Line Commands: D - Delete T - Toggle operator
A - Insert After B - Insert before

Environment : WEEKLY_BACKUP
Description : Runs Friday nights______________

Attributes - LOG: _

Press END to confirm modifications
Press CANCEL to cancel all modifications made

- Op Resource RqState Resource Description
. DAY FRI Day of week
. and SHIFT OVERNITE Operating schedule

The JBS Environment Services Modify Environments Window

Once you have added all the Resource Elements and set the operators correctly,
the END command returns you to the Manage Environments window. Save your
Environment using the File drop-down menu and selecting item 1. You are
prompted to provide a dataset name or PDS membername for saving:

TM7R1-7109 Chapter 5. JBS: Environment Services 81

Job Binding Services

- File GoTo Help
+---------------------------+ S Environment Services -------------------------
| 1 1. Save to Dataset | anage Environments Line 1 of 1
| 2. Install Environment | Scroll ===> CSR
| 3. Exit |
+---------------------------+ Delete M - Modify C - Copy B - Browse

No Environments exist. Use Line Command N to Create an Environment
- --Environment-- Log ---Description—
. WEEKLY_BACKUP NO Runs Friday nights

+---------------------- Specify Output Dataset -----------------------+
| |
| Command ===> |
| |
| Enter OUTPUT Data Set Information |
| Press ENTER to accept, END or CANCEL to return |
| |
| Data Set Name ===> ENVIRONS |
| Member Name ===> WKLYBKUP |
| |
| |
+---+

Saving Your JBS Environment

Installing a JBS Environment

To install your JBS Environment, you also use the File menu. When a JBS Envi-
ronment definition replaces an existing definition, the existing definition is com-
pared to the new definition. The number of added, replaced, or deleted
definitions is displayed, as well as the number of jobs that are affected by the
change:

At this point you are given the option of continuing with the definition. The dis-
play shows how many jobs the new definition causes to be held and/or released.

• Added is the number of new Environments or Resources introduced by the
new definition.

82 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

- File GoTo Help
+---------------------------+ S Environment Services -------------------------
| 2 1. Save to Dataset | anage Environments Line 1 of 1
| 2. Install Environment | Scroll ===> CSR
| 3. Exit |
+---------------------------+ Delete M - Modify C - Copy B - Browse

No Environments exist. Use Line Command N to Create an Environment
- --Environment-- Log ---Description—
. WEEKLY_BACKUP NO Runs Friday nights

+---------- Confirm Environment Definition Install -----------+
| |
| Command ===> |
| |
| Environments: 1 Added 0 Replaced 46 Deleted |
| Resources : 1 Added 1 Replaced 19 Deleted |
| Jobs : 0 MHSHeld 0 Held 0 Released |
| |
| Please Confirm installation of environment |
| |
| Press ENTER to confirm the request |
| Press CANCEL or EXIT to cancel the request |
| |
+---+

Installing Your JBS Environment

• Replaced is the number of Environments or Resources that are in the new
definition and also in the old definition.

• Deleted is the number of Environments or Resources that existed in the old
definition, but do not exist in the new definition.

• MHSHeld is the number of jobs that referred to Environments that will be
deleted if the new definition is accepted. These jobs will be requeued in the
primary Analysis class and placed in MHS HOLD.

• Held is the number of jobs that will be held for Environment considerations
if the new definition is accepted. These jobs were not held for Environments
prior to this definition, but might have been held for other reasons.

• Released is the number of jobs that are held for Environment considerations
that will be released if the new definition is accepted. These jobs might still be
held for other reasons.

Notes and Considerations

Defining JBS Environments

• The JBS Environment is available on the ambient system when the combina-
tion of Resource Elements and their desired states evaluates to TRUE.

• If multiple Resource Element states are specified, they are handled as fol-
lows:

° All ORs are evaluated first. The result of an OR is then treated as a sepa-
rate element for purposes of resolving AND operators.

° All AND pairs (which now include the results of any OR pairs) are then
resolved.

• JBS Environments are ignored in JECL when ThruPut Manager is deciding
whether the job is eligible for transmission to another node.

Undefined JBS Environments

Normally, when a job is submitted that requests a JBS Environment that is not
defined, it is canceled; however, you can change this behavior with the JAL state-
ment:

JBS HOLD UNDEFINED_ENVIRONMENTS(YES)

If this statement is present, jobs requesting undefined JBS Environments are
requeued in the Job Analysis class and placed in the MHS_TM hold category and
qualified by the missing Environment name, as described below.

TM7R1-7109 Chapter 5. JBS: Environment Services 83

Job Binding Services

Deleted JBS Environments

When you install a new JBS Environment definition, you might omit some Envi-
ronments that existed in the previous definition. If a job that has already been
through Job Analysis refers to a deleted Environment, then ThruPut Manager
requeues the job in the Job Analysis Class and places it in the MHS_TM hold cat-
egory, qualified by the missing Environment name. See below for further infor-
mation.

JBS Environments and MHS

A new JBS Environment definition can implicitly remove existing Environments
that have been requested by jobs awaiting execution. When a new Environment
definition is installed, ThruPut Manager detects any missing Environments and
requeues the affected jobs in the Job Analysis Class in MHS_TM hold, qualified
by the missing Environment name. When you are installing a new JBS Environ-
ment, the message DTM6463A informs you how many jobs (if any) will be placed
in MHS_HOLD as a result of the new definition.

While jobs are in MHS_TM hold for missing Environments, you can install a cor-
rected definition that revives the missing Environment. When this happens, the
MHS_TM hold for the restored Environment is removed automatically.

Defining Resource Elements

• If your Resource Element definition includes a state that is already set in the
active definition, that state persists.

• If your Resource Element definition eliminates a state that is currently set in
the active definition and your new definition does not set a state for the Re-
source Element, it is set to RESET.

• Any Resource Element for which no initial state is defined assumes the RE-
SET state, unless it already exists in an active definition, in which case it will
retain its current setting.

Undefined Resource Elements or States

If a job is submitted that includes the JECL statement /*JBS SET with a refer-
ence to a Resource Element or state that is not defined, the job is failed with a
JECL error. Note that the effect of the JAL statement JBS HOLD does not ex-
tend to undefined Resource Elements and states.

Deleted Resource Elements or States

When you install a new JBS Environment definition, you might omit some Re-
source Elements or states that existed in the previous definition. If a job that has

84 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

already been through Job Analysis refers to a deleted Element or state, the refer-
ence is effectively removed from the job. This removal is permanent, that is,
installing a new definition that contains the referenced Resource Element or
state does not revive the reference. To restore the reference, the job must be
re-analyzed.

Converting from IBM Scheduling Environments

As described in the introductory chapter, JBS Environments can be considered
equivalent to a scheduling environment. Conversion to JBS Environments there-
fore require that you remove or negate the SCHENV keyword on the requesting
job's JOB statement, and substitute a JBS Environment. To make this change
transparent to your users, the JAL Action statement SET SCHENV supports the
reserved word $NO_SCHENV:

SET SCHENV($NO_SCHENV)

This statement nullifies the SCHENV keyword on the JOB statement. You can
then use JAL to insert an Environment request that replicates the scheduling
environment:

IF ($IN_SCHENV(PRIME)) THEN
JBS NEEDS ENVIRONMENT(PRIME)
...

ENDIF

In most cases, it is likely that you can use the same name for the JBS Environ-
ment that you were using for the scheduling environment.

You can use the same names for JBS Resource Elements that you used for the
SCHENV Resource Elements and name the states ON and OFF. While this pro-
vides compatibility, it does not take advantage of the ability to use your own
names for JBS Resource Element states.

For example, assume you wanted to distinguish weekdays from weekends. Using
SCHENV, you might choose Resource Elements WEEKDAY and WEEKEND.
These can only have the states ON, OFF, or RESET.

With JBS Environments, you might define a single Resource Element named
TYPE_OF_DAY with the states WEEKDAY and WEEKEND. If desired, you
could also add the third state HOLIDAY, for example.

TM7R1-7109 Chapter 5. JBS: Environment Services 85

Job Binding Services

Using JAL with JBS Environments

Jobs can be assigned a JBS Environment through JAL by specifying the JBS
NEEDS statement:

JBS NEEDS ENVIRONMENT(WEEKLY_BACKUP)

A JBS Environment assigned in JAL overrides any Environment request made
by the job's JECL.

Descriptors have been added to allow your JAL to determine whether a JBS En-
vironment has been assigned and what its characteristics might be.

You can also use the JAL statement JBS HOLD to control the way in which jobs
requesting non-existent Environment Agents are handled.

For syntax descriptions, see the JAL Reference Guide.

Using JECL with JBS Environments

To request a JBS Environment for a job, you use the /*JBS NEEDS JECL state-
ment:

/*JBS NEEDS environ1[,environ2,environ3,environ4]

An additional JECL statement allows you to control the state for a Resource Ele-
ment:

/*JBS SET resource-name state [AT=timing]

For syntax descriptions, refer to the chapter “JECL Services” in the companion
document Base Product: System Programming Guide .

86 Chapter 5. JBS: Environment Services TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 6. Job Limiting Services (JLS) Function

This chapter describes the capabilities and services provided by the Job Limiting Services (JLS) Function.

Description

JLS is designed to assist datacenters with the problem of limiting the parallel ex-
ecution of certain types of work without having to resort to separate classes. The
proliferation of classes makes deploying initiators difficult and potentially con-
fusing. With JLS you can greatly reduce the “alphabet soup” required to control
different types of work in a standard z/OS JES2 environment. JLS delivers your
installation a set of powerful tools to manage Job Limiting. This includes:

• The ability to associate jobs with Limiting Agents with JAL.

• Facilities to create Limiting Agents dynamically in JAL. This greatly simpli-
fies the administrative requirements.

• Facilities to provide a JECL LIMIT statement with a job, or with the
DD SUBSYS.

• The ability to associate jobs with a particular Agent but with different
weights so one job can, if desired, count as several jobs.

• A system level limiting capability that allows you to define Agents that limit
only the system for which they are defined.

• Facilities to request that a job must run in exclusive mode, that is, no other
job associated with the Limiting Agent can be executing at the same time.

° A further refinement of exclusive mode is provided with the
DRAIN/NODRAIN facility. When DRAIN is associated with a job re-
questing exclusive control, other jobs that use the resource in non-exclu-
sive mode are not to be selected. This mode expedites the availability of
the resource for exclusive usage.

• A comprehensive set of operator commands, giving a higher degree of opera-
tional control. With these, the limits set in JAL can be overridden. This per-
mits rapid response to unusual situations that might be creating shortages of
computing resources.

• Addition of a JLS Display to the User Display Facility.

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 87

Job Binding Services

Implementation Summary

Before implementing the JLS Function you should become familiar with its facil-
ities and purpose. The TM/JBS Concepts and Facilities publication provides
an overall description of this function. Some examples of usage are included.

To implement the JLS Function you must:

• Determine the type of work your installation want to LIMIT.

• Determine the groupings and Limiting values.

• Insert the necessary JAL statements to associate each particular workload
with its Limiting Agents(s).

• Put in place the new JAL.

• Define the operational procedures to handle situations that may warrant the
overriding of JAL Limiting Values by operations.

Job Limiting Agents

Limiting Agents provide the control mechanism for the scheduling of jobs associ-
ated with Limits.

They are similar in naming to Binding Agents but they are totally independent.

What Is a Limiting Agent?

A Limiting Agent is a logical element that controls the number of associated jobs
that are executing concurrently.

Since this mechanism is provided to “limit” the execution of jobs, users are not
expected to provide the association:

� The installation, using JAL with all its identification capabilities, de-
tects the jobs and automatically associates them with Limiting
Agents.

Limiting Agents have a name that is chosen by your installation. The names fol-
low dataset naming conventions. They can have two levels. For example:

CLASSH.GROUP1

is a valid Limiting Agent Name.

88 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

PAYROLL

is also a valid Limiting Agent.

CLASSH.GROUPA.USER1

is not a valid name because it has three levels.

� Limiting Agents are dynamically created in JAL. The JLS_LIMITDEF
statement, together with the character string capabilities of JAL,
give you all the facilities needed for that purpose. For a detailed ex-
planation, refer to the publications DAL/JAL User Guide and JAL
Reference Guide.

Limiting Agents can have both JESplex and System level scopes:

• JESplex, which applies to all systems in the JESplex that share the Control
File. An upper limit is assigned to this type of Limiting Agent. The limit set in
JAL can be overridden with operator commands.

• System level, which applies only to the system for which it was defined. This
type of Limiting Agent is distinguished by a name beginning with ‘+’ (plus
sign). It can be defined through JAL, but the system level limit defaults to 0
and cannot be set or changed through JAL. Jobs referencing this type of Lim-
iting Agent will not run until a non-zero limit has been set by an operator
command on one or more systems.

Activating Limiting Agents

Limiting Agents are dynamic. The Agents exist only when there are jobs in the
system associated with Limiting Agents.

With JAL, a job is associated with a Limiting Agent name. If no other job is asso-
ciated with that Agent at that time, then Job Limiting Services creates the neces-
sary entry. If another job(s) is already under the control of the Agent, the new
arrival is placed in that group.

If all the jobs associated with a Limiting Agent are executed without any new job
arriving, the entry for the Limiting Agent is removed.

The JLS_LIMITDEF Statement in JAL

This statement is fully documented in the publication JAL Reference Guide,
hence this discussion represents some duplication. For a proper discussion of the
operational considerations associated with the naming of Limiting Agents, how-
ever, the capabilities of JLS_LIMITDEF are central. As a result, it is included
here.

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 89

Job Binding Services

The format of JLS_LIMITDEF is as follows:

JLS_LIMITDEF name [LEVEL1(first-level-name)]
[LEVEL2(second-level-name)]
LIMIT(value)

Where:

LEVEL1

Indicates that a level one name for the Limiting Agent is provided. It is optional
for Global Limiting Agents and mandatory for Local Limiting Agents. If not
present, the JLS_LIMITDEF “name” is used.

first-level-name

It can be one of the following:

1. A hard coded string, such as ‘SETUP’.

2. A request to create the name dynamically from a character Job Descriptor.
For example:

JLS_LIMITDEF DEVELOP LEVEL1($RACFU) ...

3. One of the execution time string variables. For example:

JLS_LIMITDEF DEVELOP LEVEL1(%FLNAME) ...

4. The special execution time variable $JXCLASS. This variable represents
the execution class assigned to the job (so far).

The level one name can begin with a ‘+’ (plus sign), indicating that the Agent
being defined will be a system level Limiting Agent.

LEVEL2

Indicates that a level two name for the Limiting Agent is provided. This keyword
is optional.

second-level-name

The same options as documented above for “first-level-name.”

LIMIT

This keyword is used to indicate the limit to be placed for the selection of jobs
that are associated with this Limiting Agent.

value

A numerical value such as LIMIT(10).

90 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

It can also be a numeric User Job Descriptor. For example:

LIMIT($USERN1)

JAL Action Statements

A number of action statements are provided to facilitate the association of jobs
and Limiting Agents. They are:

JLS ADD LIMIT

Associates an Agent with the job.

JLS REPLACE LIMIT

Replaces the Limiting Agent previously added to a job.

JLS DELETE LIMIT

Deletes the Limiting Agent previously added to a job.

Job Limiting Considerations

The JLS_LIMITDEF provides the installation with the means to cover almost
any situation in terms of creating and naming Limiting Agents. JLS_LIMITDEF
is a highly flexible tool. A word of caution, though. We should remember the old
saying: “it is so flexible that it cannot stand up”. When designing Limiting
Agents you have to decide what role you want Operations to play. If you do not
intend to have Operations adjust limits with commands, then you can be as free
with your naming conventions as you want. Otherwise, you must plan the nam-
ing conventions so the operational procedures are simple.

Since variable substitution is allowed for each level of the name you must decide
how dynamic you want the names to be.

For example:

JLS_LIMITDEF DEV LEVEL2($RACFU) LIMIT(3)

Since the keyword LEVEL1 is omitted, the above definition creates Limiting
Agents with a fixed first level qualifier of DEV. If, for whatever reason, Opera-
tions has to reduce the limit for all the Agents created under that
JLS_LIMITDEF the following JLS command does it:

/JLS SET DEV.* LIMIT(2)

The example shows that the name DEV identifies the JLS_LIMITDEF definition
for the SET LIMIT action statement. DEV is also the first level of the name of
any Limiting Agent constructed under this JLS_LIMITDEF statement. In this

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 91

Job Binding Services

case the second level of the name is dynamically constructed based on the
RACFU field of the job. Two Limiting Agents, ‘DEV.PAY0600’ and
‘DEV.ARD0055’, are shown. Both are grouped under DEV and have the same
limit of 3.

The figure below shows the relationship between the definition of the Limiting
Agent in JAL, the association of the JLS_LIMITDEF and JLS ADD LIMIT in
JAL, and any reference to the Limiting Agent via operator commands.

The operator command ‘/JLS SET DEV.* LIMIT(2)’ changes the LIMIT value
for any Limiting Agent under DEV, regardless of how many, or the name of the
second level qualifier, to 2. This new value overrides the LIMITDEF LIMIT
value until a RESET command is issued.

92 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

JAL

JLS_LIMITDEF DEV LEVEL2($RACFU,7) LIMIT(3)

JLS ADD LIMIT(DEV)

…
...
...

DEV

GROUP

Operator Command:

PAY0600 003

/JLS SET DEV.* LIMIT(2)

ARD0055 003

Limiting Agent Naming Relationships, Example 1

Now with the definition power of JLS_LIMITDEF you can do the following:

JLS_LIMITDEF DEV LEVEL1($RACFU) LEVEL2($JXCLASS) LIMIT(3)

Both levels are created dynamically, so there can be as many first level Agent
names as you have unique RACF User IDS. Clearly, if operations needs to reset
the limit value to handle an emergency, it is almost impossible.

A more manageable approach has to be used. One suggestion is the following:

• First, determine how to group the different users. Let’s say that you want to
separate them into three groups. Two of the groups may represent your IS
developers, the third group may represent your “end-user” computing com-
munity.

• Using the string definition capabilities provided with STRINGDEF, you can
create a character string to be used as your LEVEL1 parameter that allows
you “to have your cake and eat it too”. You can create a predefined grouping
of jobs for operational control while maintaining the flexibility of the
$RACFU variable substitution. This can be done as follows:

° Assign a letter to each of the three groups. For example A for the first
group, B for the second group, and C for the third group. Operations is
made aware of this simple nomenclature.

° When you construct the name for the first level qualifier do the following:
To the letter designating the group concatenate the $RACFU Job
Descriptor. The statements to do this are as follows.

STRINGDEF %NAMEA (‘A’) || ($RACFU)
STRINGDEF %NAMEB (‘B’) || ($RACFU)
STRINGDEF %NAMEC (‘C’) || ($RACFU)

° The above definitions create the required character string for use with
JLS_LIMITDEF. The definitions for the Limiting Agents are:

JLS_LIMITDEF GROUPA LEVEL1(%NAMEA) LEVEL2($JXCLASS) LIMIT(3)
JLS_LIMITDEF GROUPB LEVEL1(%NAMEB) LEVEL2($JXCLASS) LIMIT(3)
JLS_LIMITDEF GROUPC LEVEL1(%NAMEC) LEVEL2($JXCLASS) LIMIT(3)

• Now the Limiting Agents are grouped into three segments that operations
can control. With the JLS commands, operations can reset the limit for a par-
ticular group. For example, if they want to restrict group A to only two jobs,
they can do it with the following command:

/JLS SET A* LIMIT(2)

This command alters the limit for any job associated with “group A” Lim-
iting Agents. It stays as 2 until reset with another command.

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 93

Job Binding Services

Again, the relationship between the JLS_LIMITDEF, the Limiting Agents cre-
ated, and the operator command can be seen in the diagram below:

In this case you see that the following Agents have been created with
JLS_LIMITDEF GROUPA:

APAY0600.H APAY0600.E APAY0922.M APAY0922.H

The sample command sets the new limit to 2 for all the Agents whose first level
qualifier starts with “A”. This new value overrides the JLS_LIMITDEF value
until a RESET command is issued.

94 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

JLS_LIMITDEF GROUPA LEVEL1(%NAMEA) LEVEL2(%JXCLASS) LIMIT(3)

JLS ADD LIMIT(GROUPA)

…
...
...

JAL

Operator Command:

/JLS SET A* LIMIT(2)

APAY0600

APAY0922

G
R
O
U
P

A
E 003

003H

H 003

M 003

Limiting Agent Naming Relationships, Example 2

� This example illustrates both the power and flexibility of the
JLS_LIMITDEF mechanism, as well as the need to plan the naming
conventions for Agents.

System Level Limiting

As previously explained, a Limiting Agent can have its scope restricted to only
those systems that have been set to non-zero limit. An Agent that is to have sys-
tem level scope must be defined with a first level name that begins with a ‘+’
(plus sign). For example, in JAL:

JLS_LIMITDEF SYS1_LIMIT LEVEL1(+MYAGENT) LIMIT(10)

Note that this definition sets a limit of 10. This limit is a JESplex limit that ap-
plies to the total of all jobs using this Agent across the JESplex. You cannot spec-
ify the system level limit in JAL, it must be set by using the JLS SET operator
command. When the system level Limiting Agent is initially defined by an opera-
tor JLS SET command, the default for its JESplex limit is 1. Only JLS SET com-
mand allows you to set limits that apply to individual systems.

When the Agent is defined using JAL the default for all system level limits is 0.
This means that jobs associated with the Agent will not run until a system
level limit is set with the JLS SET command:

/JLS SET +MYAGENT LIMIT(5) SYSTEM(SYS1)

This command sets the limit for +MYAGENT to 5, but only on SYS1. The limit
on other systems remains at 0 until specifically set, and the JESplex limit re-
mains unchanged (10 in our example above). Of course, when the limit for
+MYAGENT is set on another system, it can have a value different from the one
set for SYS1.

Because you cannot set a system level Limit in JAL, the JLS RESET command
has a slightly different effect on system level Limiting Agents. You can specify
that a specific system level Limiting Agent be reset:

/JLS RESET +MYAGENT SYSTEM(SYS1)

Since there cannot be a JAL-specified limit, this command resets the system level
Limit to 0, the default. Omitting the SYSTEM keyword applies the command to
the JESplex limit for the Agent, therefore the JESplex limit is reset to whatever
was specified when the Agent was defined. If no limit was specified at definition,
the JESplex limit is reset to 1, the default.

For all other purposes, system level Agents can be treated exactly like JESplex
Agents. You can associate jobs with system level Limiting Agents in JAL, just as
with JESplex Limiting Agents. The JLS ABANDON command lets you remove

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 95

Job Binding Services

jobs from the control of a system level Limiting Agent, and you can display them
with the JLS DISPLAY command.

JLS and JES2 Exit 14 (Job Queue Work Select)

JLS extends the JES2 QGET logic by using JES2 Exit 14, the JES2 Job Queue
Work Select exit. This allows JLS to resolve the “initiator race” problem.

This problem has been eliminated by extensions to the JES2 QGET logic
through the use of JES2 Exit 14, the Job Queue Work Select exit.

� If your installation uses, or plans to use, JES2 Exit 14 for the purpose
of selecting jobs for execution, please contact ThruPut Manager
Customer Support. We will help you determine whether there is a
conflict and if so, what can be done about it.

If the job selection process is left entirely to the standard z/OS JES2 logic, JES2
does not ensure that the next selected job is actually the first one eligible for a
Limit.

With the ThruPut Manager changes to JES2 Exit 14, QGET and JLS co-oper-
ate to ensure that the next job to get the Limit really is the first avail-
able one. The logic in Exit 14 eliminates “initiator races” with their
unpredictable results.

96 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

UDF Extensions For JLS

If the User Display Facility shows the JLS acronym for a job, a user can select
that acronym and open the JLS Window. A sample JLS Window is shown here.

The first line of the JLS Window is the Information Summary Line for the job.

Subsequent lines list each Limiting Agent affecting the selected job. Each line
lists a Limiting Agent, showing the weight assigned to that job (default weight is
1), or, for ENQ Limiting Agents, whether the Agent is exclusive (EXC) or shared
(SHR).

Highlighted lines indicate that the Limiting Agent described on that line causes
the selected job to be held. Remember that other causes could also result in the
job being held.

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 97

Job Binding Services

-------------------------- TM/User Display Services V6------------------------
COMMAND INPUT ===> SCROLL ===> CSR

NP JOBNAME TYPE JNUM PRTY C POS RMT *---------- (Job List Display) ---------*
AP9002UP JOB 1145 12 E 1 |_ JC JB H |
PR4000PR JOB 1147 12 E 2 | Exempt |
GL3005TB JOB 1143 10 E 3 |_ JB JC JL H |
UPDATE JOB 1177 10 U 1 17 |_ JS H |
BMP202 JOB 1155 10 F 1 |_ JB |
BMP203 JOB 1156 10 F 2 |_ DC JL H |
COMPILE JOB 1139 10 D 1 20 |_ Awaiting Analysis D |
MYTEST JOB 1142 10 T 1 20 |_ Data Only |
TLT9 *------------------------ (JLS Display) ----------------------* |
TLT9 | GL3005TB(JOB01143) _ JB JC JL H | |
GL30 | Limited by ACCT.GL01 Needs(001) | |
RELO | Limited by ACCT.GL02 Needs(001) | |

| Limited by ACCT.BACKUPS Needs(002) |-------*

The JLS Display Window

Displaying Installation-defined Information

UDF allows you to define an ISPF panel that is displayed when a user places the
cursor on a JLS Limiting Agent name in the JLS Display Window and then hits
ENTER. The panel name is associated with the Agent by the PANEL keyword of
the JLS_LIMITDEF DAL/JAL statement:

JLS_LIMITDEF DEVELOP … PANEL(OURPANEL)

OURPANEL must be a valid ISPF selection panel, since it is displayed using the
ISPF SELECT service.

UDF initializes several ISPF variables that you can use in your panel, as shown
in the table below.

ISPF Variables Initialized for Installation-defined UDF JLS Display

Name Type Length Description

DTMJOBNM Char 8 JES2 job name.

DTMJOBID Char 8 JES2 job ID.

DTMRACGR Char 8 RACF group (RACF only).

DTMRACUS Char 8 RACF user ID (RACF only).

DTMTSSUS Char 8 TSS user ID (TSS only).

DTMACFSI Char 8 ACF2 Source ID (ACF2 only).

DTMACFLI Char 8 ACF2 logon ID (ACF2 only).

DTMACFUI Char 24 ACF2 user ID (ACF2 only).

DTMJLNAM Char 17 JLS Limiting Agent name.

DTMJLVRB Char 5 JLS verb (LIMIT, ENQ).

DTMJLLIM Char 3 JLS Limit value (when LIMIT).

DTMJLWEI Char 3 JLS Limit weight (when LIMIT).

DTMJLTYP Char 3 JLS ENQ type (when ENQ).

98 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Facilities Summary

JLS Operator Commands

Command Description

JLS ABANDON Unconditionally removes a job from Job Limiting Services con-
trol.

JLS DISPLAY Displays information about Limiting Agents, jobs, and their rela-
tionships.

JLS RECONCILE Analyzes active Limiting Agents and ensures synchronization
with the Control File.

JLS RESET Resets Limiting Agents to the normal status of accepting Limiting
values from JAL.

JLS SET Overrides Limiting Values from JAL. The SET value stays until a
RESET command is issued.

JLS JECL Statements

Refer to Base Product: System Programming Guide

Statement Description Chapter

/*JLS ENQ This statement is provided for the Mellon Bank
Compatibility Mode.

7

/*JLS LIMIT Sets up a Limiting Agent for the job. 7

TM7R1-7109 Chapter 6. Job Limiting Services (JLS) Function 99

Job Binding Services

100 Chapter 6. Job Limiting Services (JLS) Function TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 7. Job Chaining Services (JCS) Function:
Before & After

This chapter describes the Job Chaining Services or Before & After facility of TM/Job Binding Services, provided
for Mellon Bank compatibility purposes.

Introduction

The TM/Job Binding Services Component includes Job Chaining Services (JCS).
It is active by default. If you do not want to use it, you can deactivate it with the
OPTIONS keyword of TMPARM. This section describes the capabilities of JCS.

Requirements

Job Chaining Services requires the Control File.

Job Chaining Services—Before & After

This mode replicates the behavior of the BEFORE & AFTER (B&A) support of
Mellon Bank, with some enhancements:

• With JCS, a job is known only from the time it arrives in the system until it
terminates (normally or abnormally) or is purged, whichever occurs first.

• With the Mellon Bank, the B&A applies to all the jobs present in the sys-
tem at the time the job is to be selected for execution. This scope can create
problems because one group can inadvertently affect another group. JCS pro-
vides you with control over the scope of B&A statements.

For a job to be part of the B&A domain, it must have a Job Chaining BATCH
Name. Jobs without a BATCH Name associated with them are not “seen” by the
B&A processor. Jobs with different BATCH Names are unrelated to one another.

The BATCH Name can be assigned either:

• With the JECL statement /*JCS BATCH.

• In JAL, using the JCS SET BATCH action statement.

The BATCH Name allows your installation to group jobs into separate domains
so the scope of BEFORE and AFTER statements can be controlled.

TM7R1-7109 Chapter 7. Job Chaining Services (JCS) Function: Before & After 101

Job Binding Services

BATCH Name Conventions

The BATCH Name is a one or two level name following dataset naming rules.
For example:

PAYROLL PAYROLL.GROUP1

are both valid BATCH Names.

In JAL you can verify:

• If a JECL BATCH statement is present in the job.

• The actual BATCH Name so you can enforce naming conventions.

Implementation Summary

To implement JCS to behave like the Mellon Bank BEFORE & AFTER:

• During the JAL processing, assign each job the same BATCH Name. This
way all jobs in the system belong to the same B&A domain. The name can be
an arbitrary 17 character string that conforms to the naming conventions de-
scribed above.

• You might want to create more than one domain. Using different BATCH
Names you can, for example, separate your production jobs from your on-de-
mand jobs to eliminate the potential of accidental interference:

° Assign all production jobs the same BATCH Name of “PROD”.

° For the other type of work, assign a different BATCH Name, for example
“TEST”.

° With the above implementation, the BEFORE and AFTER statements
for a job with a BATCH Name of TEST do not “see” jobs with a BATCH
Name of PROD.

JECL Statements

Job Chaining Services accepts the JECL statements /*BEFORE and /*AFTER
with the same syntax and meaning as the Mellon Bank JECL statements. Users
do not have to make any changes. The following JECL statements are supported:

/*BEFORE or /*JCS BEFORE
/*AFTER or /*JCS AFTER
/*JCS BATCH

JCS also supports extensions to these statements. The actual format is described
in the JECL Reference Guide.

102 Chapter 7. Job Chaining Services (JCS) Function: Before & After TM7R1-7109

ThruPut Manager® System Programming Guide

� If you are not a previous user of the Mellon Bank usermod BEFORE &
AFTER you should be aware that the relationships of jobs do not
carry any history. If the job you are referring to in a BEFORE or
AFTER statement is not in the system, the condition is considered to
have been satisfied.

Batch Job Sequencing

The /*JCS BATCH statement supports the SEQUENCE keyword. When coded,
this keyword specifies that, within the named BATCH, jobs must be executed in
the same sequence in which they were read in. Sequencing applies as long as
there are at least two jobs from the named BATCH still in the system.

� Do not use the SEQUENCE keyword for a job that includes any of the
/*JCS AFTER, the /*JCS BEFORE, the /*AFTER, or the /*BEFORE
statements. Doing so requests conflicting processing sequences
with unpredictable results.

Adding a BATCH Name to TSUs and STCs

Three methods are provided:

1. A //*+JCS BATCH statement can be added to the TSU or STC procedure.

2. The DD Subsystem Interface can be used to insert a JCS BATCH statement
in the TSU or STC procedure.

3. A BATCH Name can be added dynamically to the STC or TSU by using the
JECL keyword of the TMPARM JES2 initialization statement.

The first two methods need no further explanation other than those given else-
where in this manual. The following discussion therefore deals only with the dy-
namic addition of the BATCH Names to TSUs or STCs.

Implementation

The TMPARM JECL keyword has been extended so that you can use it to indi-
cate what BATCH Name should be added and which STCs or TSUs are eligible
for this process. Different TSUs or STCs can be associated with different JCS
BATCH Names.

To add a BATCH Name dynamically to a TSU or STC, code the following JECL
keywords on the TMPARM JES2 initialization statement.

TM7R1-7109 Chapter 7. Job Chaining Services (JCS) Function: Before & After 103

Job Binding Services

For TSUs:

TMPARM … JECL=($JCSTSO,name,IGNORE,XLATE(level1,level2))

For STCs:

TMPARM … JECL=($JCSSTC,name,IGNORE,XLATE(level1,level2))

Where:

$JCSTSO

Is a subparameter indicating that this JECL keyword is to apply to TSUs.

$JCSSTC

Is a subparameter indicating that this JECL keyword is to apply to STCs.

name

Is the jobname of the TSU or STC.

You can use the wildcard character ‘*’ (asterisk) to make the name ge-
neric. For example, “DFP*”.

� Do not use the mask “*” for STCs. Any started task ahead of
ThruPut Manager will not be able to “get going”.

You can use “*” to indicate the BATCH Name is to be applied
to all TSUs.

� Under no circumstances should you include a specific or ge-
neric name to STCs that includes the name of the ThruPut
Manager address space.

level1

Is the 1st level of the BATCH Name.

level2

Is the 2nd level of the BATCH Name.

Considerations

You can choose to exclude a STC or TSU from this process. Use the IGNORE
keyword instead of the XLATE keyword to accomplish this:

JECL=($JCSTSO,name,IGNORE,IGNORE)
JECL=($JCSSTC,name,IGNORE,IGNORE)

104 Chapter 7. Job Chaining Services (JCS) Function: Before & After TM7R1-7109

ThruPut Manager® System Programming Guide

Example

JECL=($JCSTSO,*,IGNORE,XLATE(TSO,BATCH))
JECL=($JCSSTC,IMS*,IGNORE,XLATE(IMS,BATCH))

These statements would cause the equivalent of a //*+JCS BATCH TSO.BATCH
statement to be added to all TSUs and the equivalent of a //*+JCS BATCH
IMS.BATCH to be added only to STCs with a name starting with “IMS”.

UDF Extensions for JCS

If the User Display Facility shows the JCS acronym for a job, a user can select
that acronym and open the JCS Window. A sample JCS Window is shown here.

The first line of the JCS Window is the Information Summary Line for the job.

BATCH-ID identifies the JCS Batch to which the job belongs.

TM7R1-7109 Chapter 7. Job Chaining Services (JCS) Function: Before & After 105

Job Binding Services

-------------------------- TM/User Display Services V6-------------------------
COMMAND INPUT ===> SCROLL ===> CSR

NP JOBNAME TYPE JNUM PRTY C POS RMT *---------- (Job List Display) ---------*
AP9002UP JOB 1145 12 E 1 |_ JC JB H |
PR4000PR JOB 1147 12 E 2 | Exempt |
GL3005TB JOB 1143 10 E 3 |_ JB JC JL H |
UPDATE JOB 1177 10 U 1 17 |_ JS H |
BMP202 JOB 1155 10 F 1 |_ JB |
BMP203 JOB 1156 10 F 2 |_ DC JL H |
COMPILE JOB 1139 10 D 1 20 |_ Awaiting Analysis D |
MYTEST JOB 1142 10 T 1 20 |_ Data Only |
TLT9 *------------------------ (JCS Display) ----------------------* |
TLT9 | GL3005TB(JOB01143) _ JB JC JL H | |
GL30 | BATCH-ID=GL300 | |
RELO | After GL3005FR | |

--- -------*

The JCS Display Window

Subsequent lines show whether the selected job must run BEFORE or AFTER
other jobs in the BATCH, one line per job.

Highlighted lines indicate that the job whose AFTER request is described on that
line is causing the selected job to be held. Satisfying this condition does not as-
sure that the job will be released, however, since there might be additional rea-
sons why the job is being held.

Facilities Summary

JCS Operator Commands

Command Description

JCS DISPLAY Displays information about jobs that are under the control of
JCS.

JCS RELEASE Allows you to unconditionally release a job from Job Chaining
Services Control.

JCS JECL Statements

Refer to Base Product: System Programming Guide

Statement Description Chapter

/*AFTER Indicates to JCS a job is to run after a named
job.

7

/*BEFORE Indicates to JCS a job is to run before a
named job.

7

/*JCS AFTER Indicates to JCS a job is to run after a named
job.

7

/*JCS BATCH Assigns a BATCH Name to the job. 7

/*JCS BEFORE Indicates to JCS a job is to run before a
named job.

7

106 Chapter 7. Job Chaining Services (JCS) Function: Before & After TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 8. Mellon Bank Compatibility Services

This chapter describes the integrated services provided by TM/Job Binding Services for compatibility with the
Mellon Bank Shared Spool Mods.

Introduction

This section presupposes that you are familiar with TM/Job Binding Services
and the Mellon Bank Shared Spool Mods.

The TM/Job Binding Services Component provides integrated facilities that are
compatible with the following JES2 User Mods:

1. Resource Routing (/*ROUTE XEQ resource-name)

2. Resource Serialization (/*CNTL)

3. Job Dependency (/*WITH)

4. Job Chaining (/*BEFORE and /*AFTER)

This chapter describes how TM/Job Binding Services relates to the first three fa-
cilities listed above. Job Chaining (Before & After) is described in “Chapter 7.
Job Chaining Services (JCS) Function: Before & After.”

Enabling Mellon Bank Compatibility

After you have installed TM/Job Binding Services, the Mellon Bank Compatibil-
ity Option status is “installed/inactive”. You use the OPTIONS keyword in the
TMPARM JES2 statement to enable this option.

The Resource Routing Facility

The Resource Routing Services provided by the Mellon Bank JES2 Mod is sup-
ported by the Job Binding Services function of TM/JBS. Before attempting to
activate this compatibility option you should have the JBS function
fully operational.

TM7R1-7109 Chapter 8. Mellon Bank Compatibility Services 107

Job Binding Services

Resource Definition

With the Mellon Bank User Mods, resources are defined using the $RESTABL
macro. They are arbitrary 8-character names that represent whatever the instal-
lation wants them to represent.

With TM/JBS, you define Binding Agents using the DEFINE command. These
Agents can be used to represent your current “resources”. TM/JBS allows
two-level names; however, if you want to have identical names you can use a sin-
gle level 8-character name.

TM/JBS provides several types of Binding Agents. Permanent is the type of
Agent that corresponds to the $RESTABL resources.

Resource Activation/Deactivation

$QA Command

With the Mellon Bank Mods, you attach a resource to a particular CPU using the
$QA command.

With TM/JBS, you use the ACTIVATE command.

$QD Command

With the Mellon Bank Mods, you remove a resource with the $QD command.

With TM/JBS, you use the DEACTIVATE command.

The ACTIVATE and DEACTIVATE commands for Permanent Binding Agents
provide all the necessary options to completely replicate the attaching and de-
taching of resources to MAS systems.

Display Facilities

The Mellon Bank Mods provide display commands to show jobs that are associ-
ated with resources that are not attached to any CPU.

With TM/JBS, you use the JBS DISPLAY command with the following keywords:

JBS DISPLAY HELD

The display output shows all the jobs that are in HOLD status because they have
requested Binding Agents that are not Active. This is the equivalent of “re-
sources” that are not attached.

108 Chapter 8. Mellon Bank Compatibility Services TM7R1-7109

ThruPut Manager® System Programming Guide

JECL Control Statements

The Mellon Bank Mod uses the “/*ROUTE XEQ name” JECL statement as the
means for users to request resource routing.

The equivalent service is provided by TM/JBS with the JECL statement:

/*JBS BIND name

With the Mellon Bank User Mods, the name of the resource determines how the
ROUTE statement is to be treated using the following search algorithm:

• The $RESTABL is searched first.

• If a name match is found, the ROUTE statement is treated as a resource asso-
ciation request.

• If not, it is treated as an NJE routing request.

To make the transition as simple as possible, TM/JBS accepts the /*ROUTE XEQ
JECL statements.

� When you activate the Mellon Bank compatibility option, the mecha-
nism to convert the statements is activated automatically.

The only difference between the Mellon Bank Mods and TM/JBS is in the name
validation process:

• TM/JBS searches the JES2 NJE node name table first.

• If the name is a valid NJE node, then the ROUTE statement is not converted
to a BIND statement. As a result, the system treats it as a normal JES2 NJE
routing request.

• If the name is not a node name, then the ROUTE statement is converted to a
BIND statement to be processed by the Binding Services processor at Job
Analysis Time.

Special Cases

There are two special cases of resource routing:

/*ROUTE XEQ HERE
/*ROUTE XEQ CPUn

If you are using the above facilities, then the following must be done:

1. Define Permanent Binding Agents with the names CPU1 to CPUn, where n
represents the highest possible system number in your MAS complex.

TM7R1-7109 Chapter 8. Mellon Bank Compatibility Services 109

Job Binding Services

2. Associate each one of them with the corresponding JES2 system at
ACTIVATION. These Agents must always be active.

Note that HERE is automatically converted to CPUn, where n is the correspond-
ing CPU number to the system where the job was submitted.

Additional Considerations

If you have renamed the /*ROUTE XEQ control statement for Resource Routing
to a user name, for example /*RESOURCE, you have to “inform” ThruPut
Manager of the change. You can do that with the keyword JECL in the
TMPARM initialization statement. This facility is explained in JECL Reference
Guide

The CNTL Facility

The Control Facility for the compatibility mode is supported by the Job Limiting
Services function of TM/JBS. JLS is fully documented in the standard ThruPut
Manager publications. Before attempting to activate this compatibility op-
tion, you should have the JLS function fully operational.

Implementation

With the Mellon Bank Mods, a facility is provided that allows users to sin-
gle-thread jobs by using JECL statements.

The JECL statement is:

/*CNTL resource-name,EXC
or

/*CNTL resource-name,SHR

TM/JBS provides two methods to replicate this facility.

1. You can continue using the Mellon Bank Mod control statements. TM/JBS
automatically invokes the JLS function to accomplish the same result.

2. You can automatically insert the needed control statement, using the JAL
statements JCS_CNTLDEF and JLS SET CNTL.

The WITH Facility

The WITH facility is provided for compatibility for users converting from the
Mellon Bank modifications. If you do not already use WITH but have a require-
ment for co-requisite jobs, use the facilities of Job Binding Services.

110 Chapter 8. Mellon Bank Compatibility Services TM7R1-7109

ThruPut Manager® System Programming Guide

The WITH facility allows you to ensure that a given job executes on the same
JES2 complex member as a specified job. By including the appropriate JECL
statement, you can specify that the job cannot run unless the job named on the
JECL statement is already running.

ThruPut Manager supports the WITH facility through JCS.

Implementation

The Mellon Bank modifications implement the WITH facility through the WITH
JECL statement:

/*WITH jobname

ThruPut Manager honors this format of the WITH statement, and also supports
the WITH facility with the following JCS JECL statement:

/*JCS WITH jobname[,NOSYSAFF]

The NOSYSAFF keyword allows you to specify that the jobs can run on different
systems in the complex.

Facilities Summary

Mellon Bank Compatibility Commands

Command Description

JBS DISPLAY Displays information for jobs with ROUTE XEQ control state-
ments.

JCS DISPLAY Display information about jobs that have WITH dependencies.

JLS DISPLAY Displays information for jobs with a CNTL statement.

TM7R1-7109 Chapter 8. Mellon Bank Compatibility Services 111

Job Binding Services

JECL Statements

Refer to Base Product: System Programming Guide

Statement Description Chapter

/*CNTL This JECL statement is accepted for compati-
bility purposes. It is internally converted to a
JLS ENQ statement.

7

/*JCS WITH Specifies that a job depends on the concurrent
execution of another job.

7

/*JLS ENQ Allows the serialization of jobs, whenever it is
necessary.

7

/*ROUTE XEQ This JECL statement is accepted for compati-
bility purposes. It is internally converted to a
JBS BIND statement.

This Chapter
Page 109

/*WITH This JECL statement is accepted for compati-
bility purposes. It is internally converted to a
JCS WITH statement.

7

112 Chapter 8. Mellon Bank Compatibility Services TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 9. DD Subsystem Interface

This section discusses started tasks and their use of the DD SUBSYS to supply the equivalent of JECL to
ThruPut Manager.

Introduction

The DD SUBSYS interface was originally provided because started tasks could
not use the services of JES2 control statements. This was not a ThruPut Man-
ager restriction, it was the way that z/OS JES2 worked. Current versions of z/OS
allow ThruPut Manager to provide JECL services by using the JCL comment
form for statements:

//*+JBS BIND AGENT1

While the DD SUBSYS interface is still supported, we recommend the use of the
simpler JCL comment form.

DD SUBSYS Interface

Started tasks can request ThruPut Manager services using the SUBSYS keyword
of the JCL DD statement. This is the equivalent of JECL statements for batch
jobs. The format is shown on the next page.

Started tasks are not processed by the Job Analyzer. As a result:

• The ThruPut Manager installation exit 19 is not invoked.

• JAL Verification of JECL control statements is not applicable.

Since started tasks are under the control of the datacenter, the above services
are normally not required.

� The DD SUBSYS facility is only available to started tasks. It is not op-
erational for batch jobs.

TM7R1-7109 Chapter 9. DD Subsystem Interface 113

Job Binding Services

DD SUBSYS

JECL for started tasks

Provides started tasks with a mechanism to include the equivalent of JES2 control statements in their JCL.

� This mechanism is not operational for batch jobs.

//ddname DD SUBSYS=($$TM,’JBS ACTIVATE’)
//ddname DD SUBSYS=($$TM,’JBS DEACTIVATE ...’)
//ddname DD SUBSYS=($$TM,’JBS BIND’)
//ddname DD SUBSYS=($$TM,’JBS MESSAGE....’)
//ddname DD SUBSYS=($$TM,’JLS LIMIT....’)

ddname

Can be any arbitrary DD name.

SUBSYS

Indicates that this DD statement is to be processed by the named subsystem.

$$TM

Is the name of the ThruPut Manager subsystem.

JBS ACTIVATE/JBS DEACTIVATE

Conform to the /*JBS ACTIVATE and /*JBS DEACTIVATE JES2 control statements format de-
scribed in JECL Reference Guide.

You can use JBS API services to activate and deactivate Agents. The JBS MESSAGE facility can
also be used. It is described below.

JBS BIND

Can be used to ensure that the started task is being initiated in the correct processor, or when a
particular GLOBAL Agent is active:

� If the Agent is not active the started task is not initiated.

� If the Agent is active but in a different processor the started task is not initiated.

In both cases, an appropriate message is issued to indicate the problem.

JBS MESSAGE

This conforms with the JECL ‘JBS MESSAGE’ statement described in JECL Reference Guide. The
only consideration is the syntax requirements resulting from JCL conventions for the use of apostro-
phes. The best way to show the required syntax is with an example.

Here is a JECL statement:

114 Chapter 9. DD Subsystem Interface TM7R1-7109

ThruPut Manager® System Programming Guide

/*JBS MESSAGE *’IEA123I’*’CICSPROD’*,API=10

The equivalent DD SUBSYS request is:

//anyname DD SUBSYS=($$TM,’JBS MESSAGE *’’IEA123I’’*’’CICSPROD’’*,API=10’)

The JCL syntax rule is simple (even though the resulting statement looks awkward): The character
string to be passed to the subsystem must be enclosed in apostrophes. This explains the opening
and closing apostrophes. If the string to be passed contains apostrophes, then you must code two
apostrophes for each apostrophe to be passed.

You might ask: what if the message string I want to match has apostrophes? Again an example is
the best way to show the syntax. The message to match is IEA123I DAY’S TEST.

Here is the JECL statement:

/*JBS MESSAGE *’IEA123I DAY’’S TEST’*,API=10

The equivalent DD SUBSYS request is:

//anyname DD SUBSYS=($$TM,’JBS MESSAGE *’’IEA123I DAY’’’’S TEST’’*,API=10’)

A bit tedious, but this follows the consistent rule of coding two apostrophes for each one to be
passed to the subsystem.

JLS LIMIT

Can be used to associate a started task with a Limiting Agent.

If the limit has been reached the started task is not initiated.

This can be used to prevent the accidental starting of a task. For example, you may want to have
only one task of a given type active in your MAS complex. Placing a Limiting Agent with a Limit of
1 prevents another similar task from starting.

Notes:

Note that all the facilities described in JECL Reference Guide for the DD SUBSYS supported statements
are applicable when using the DD SUBSYS interface.

TM7R1-7109 Chapter 9. DD Subsystem Interface 115

Job Binding Services

116 Chapter 9. DD Subsystem Interface TM7R1-7109

ThruPut Manager® System Programming Guide

Chapter 10. Application Program Interface (API)

This chapter provides a brief description of the Application Program Interface.

Description

There are situations where you want to activate or deactivate Binding Agents
from a program, or as a result of an application having done something. A typical
example is a CICS region that dynamically allocates and deallocates resources. In
this case, no step initiation or step termination takes place. The region might
simply deallocate a database dynamically for maintenance purposes. Prior to do-
ing that, the Binding Agent associated with that service should be deactivated.

There are also situations in which you want to determine the status of an Agent
either in your own code or in a CLIST or REXX script. For example, a CLIST
that submits jobs might test the status of an Agent to determine whether a
particular job should be submitted.

APIs are provided to address both situations.

Activating/Deactivating Using the API

There are two methods that can be used:

• The first method applies to situations where you have control of the software
that dynamically allocates and deallocates the resources. In this case, you can
add code to issue the required message:

DTM6999A JBSAPI=nn

• The second method covers two common situations:

° You cannot insert your own “code” in the application that activates/deac-
tivates the resources; therefore, you cannot issue the required message.
This situation is typical of CICS R2, where commands are now provided
to allocate and deallocate particular resources.

° There is a delay between the time an Agent is activated and the time the
actual resource is available. As a result, jobs start to execute before the re-
source is truly available. This occurs even though the Agent is activated
at the step level.

TM7R1-7109 Chapter 10. Application Program Interface (API) 117

Job Binding Services

API Method 1

WTOs are trapped for jobs that are submitted with the JES2 statements:

/*JBS ACTIVATE Agent-name,API=xx
or

/*JBS DEACTIVATE Agent-name,API=xx

This method expects a fixed message format. The message format is as fol-
lows:

DTM6999A JBSAPI=xx

Where:

DTM6999A

A message identifier to go in SYSLOG.

JBSAPI=xx

The identification mechanism that links this request to the actual /*JBS
ACTIVATE or /*JBS DEACTIVATE JES2 statement.

A route code 11 (write-to-programmer) is recommended.

For high level languages such as COBOL or PL/I, all that is needed is a DIS-
PLAY statement with the text:

DTM6999A JBSAPI=xx

� The message must begin with DTM6999A in column 1.

API Method 2

In this situation you do not have a fixed format message. You are “watching” for
a particular text in a message or messages from the address space. A facility is
provided to specify the message text that is to trigger the activation of the Agent.
Several messages can be associated with the activation of an Agent. This covers
cases where different messages could indicate when a resource becomes avail-
able. The message facility allows you to specify either a precise text
match or a pattern match.

To support the above facility, a JECL statement is available for JBS. The format
is as follows:

/*JBS MESSAGE msgmask,API=id

For a detailed description of this statement, refer to JECL Reference Guide.

Some examples of the use of this facility are:

118 Chapter 10. Application Program Interface (API) TM7R1-7109

ThruPut Manager® System Programming Guide

/*JBS ACTIVATE RESOURCE.A,API=10
/*JBS MESSAGE *’IST009A’*’STARTED’*,API=10

The above statement matches any message with IST009A and STARTED in its
text. The message must occur within the address space running the job with the
Message statement. When a match occurs, RESOURCE.A is activated.

/*JBS MESSAGE *’USERID=’???’PROD’*,API=10

The above statement matches any message with USERID=cccPROD, where c
represents any character.

/*JBS ACTIVATE CICS.PROD,API=10
/*JBS MESSAGE *’IEA123I’*’CICSPROD’*,API=10
/*JBS MESSAGE *’IEA125I’*’CICSPROD’*,API=10

In the previous example, a match on either message triggers the activation of
CICS.PROD

� You can associate multiple messages with one ACTIVATE or DEAC-
TIVATE statement. They are connected with the API id number. You
can also associate one message with multiple ACTIVATE or DEAC-
TIVATE statements.

Testing Agent Status Using the API

To allow you to test the status of an Agent, JBS provides an API using the
DTMJBAPI program. This program can be invoked in several ways. It can be:

• Invoked directly through JCL.

• Called as a TSO command from REXX or a CLIST.

• Called using a CALL or LINK from your own code.

DTMJBAPI accepts a single Agent name or name mask (e.g. ABC*), and sets a
return code reflecting the status of the Agent(s). Possible return codes are shown
in the table below.

DTMJBAPI Return Codes

Return Code Meaning

0 Agent is active on the local system.

4 Agent is active on another system in the JESplex.

TM7R1-7109 Chapter 10. Application Program Interface (API) 119

Job Binding Services

DTMJBAPI Return Codes

Return Code Meaning

8 Agent is active on another node.

12 Agent is inactive.

16 Agent is not defined.

20 System error.

If DTMJBAPI is invoked from another program, the return code is found in
register 15. Additional information is returned in register 0 as follows:

• If the return code is 0 or 4, register 0 contains the 4-byte affinity mask.

• If the return code is 8, register 0 contains the 2-byte node number.

• If the return code is 20, register 0 contains the error reason code.

If the request to DTMJBAPI was an Agent name mask, the result is the lowest
return code for any Agent that matches.

DTMJBAPI accepts a standard parameter list or a TSO CPPL. The VL bit must
be on for a standard parameter list. The format is:

R1 -> x'8aaaaaaa'

aaaaaaaa

Represents the parameter address.

Parm -> x'llll',c'agent.name'

llll

Represents the length of the Agent name.

agent.name

Represents the Agent name.

Sample Assembler Code

LA R1,PARMLST
OI PARMLST,=X'80' SET VL BIT
LINK EP=DTMJBAPI

120 Chapter 10. Application Program Interface (API) TM7R1-7109

ThruPut Manager® System Programming Guide

LTR R15,R15
...

PARMLST DC A(PARM)
PARM DC Y(L'AGENT)
AGENT DC C'TEST.AGENT'

JCL Example

//CHK EXEC PGM=DTMJBAPI,PARM='DBASE.UP'
/* RUN STEP1 IF AGENT ACTIVE HERE
//STEP1 EXEC PGM=DBASE1,COND=(0,LT,CHK)
// ...
//* RUN STEP2 IF AGENT ACTIVE ON ANOTHER SYSTEM
//* BUT NOT IF ACTIVE HERE
//STEP2 EXEC PGM=DBASE2,COND=((4,LT,CHK),(0,EQ,CHK))
// ...

CLIST Example

PROC 0
DTMJBAPI DBASE.UP
SET &CC = &LASTCC
IF &CC = 0 THEN DO

CALL 'SYS1.LINKLIB(DBASE1)'
END

IF &CC = 4 THEN DO
CALL 'SYS1.LINKLIB(DBASE2)'
END

IF &CC > 4 THEN WRITE 'DATABASE NOT AVAILABLE, CODE=&CC'
...

Facilities Summary

API JECL Statements

Refer to System Base Product: Programming Guide

Statement Description Chapter

/*JBS MESSAGE Allows you to specify the text pattern to match
with messages to trigger the API mechanism.

7

TM7R1-7109 Chapter 10. Application Program Interface (API) 121

Job Binding Services

122 Chapter 10. Application Program Interface (API) TM7R1-7109

ThruPut Manager® System Programming Guide

Index

Index

Special Characters

$$DELETE
Special Incompatible Agent 38

$QA Command
Mellon Bank Compatibility 110

$QD Command
Mellon Bank Compatibility 110

$RESTABL Macro
Mellon Bank Compatibility 110

$RESTABL Search
Mellon Bank Compatibility 111

&AGENT
SAC Message Insert 48

&CURRENT
SAC Message Insert 48

&ENTITY
SAC Message Insert 49

&JOBNAME
SAC Message Insert 49

&JOBNUMBER
SAC Message Insert 49

&NAME
SAC Message Insert 49

&PRODUCT
SAC Message Insert 49

&SYSTEMS
SAC Message Insert 49

A

AFTER
JECL Statement 108

AGENT Keyword
TYPE(PRODUCT) Statement 50

ALTER Subparameter
TYPE(PRODUCT) Statement 50

API
Activating and Deactivating With 119
Binding Agent 23
COBOL 120
Considerations 25
See Also DTMJBAPI
Description 119
Facilities Summary 123
Fixed Message 23,120
Introduction for JBS 16
JBS Message 123
Message Format 119
Message ID 120
Message Pattern 23,120
PL/I 120
Route Code 120
Testing Agent Status With 121
Using DTMJBAPI 121

Access Control
Software 43

Activating
Binding Agents 22
Limiting Agents 89
Using the API 119

Agents
Incompatible 35

B

BATCH Name
Before & After 103
Conventions 104
For TSUs and STCs 105
JCS 103

BEFORE
JECL Statement 108

Batch Control
Software Access Control 56

Before & After
BATCH Name 103
Facilities Summary 108
Implementation 104
JCS DISPLAY Command 108
JCS RELEASE Command 108
JECL Statements 104,108
Job Chaining Services 103
Operator Command 108
Scope of Control 103

Binding Agent
API 23
Activating 22
Activation Attributes 20
Attributes 19
Binding Request 23
Busy 25
DD SUBSYS 22
Defining 20
Definition Attributes 19
Deletion Considerations 25
GLOBAL Attribute 20
Group Definition 20
Introduction 18
JAL VERIFY Command 27
JECL 22
Job-related 19
LOCAL Attribute 20
LOG Attribute 21
MULTIPLE Attribute 21
Naming 18
OPER Attribute 22
PERMANENT Attribute 19
Reserving 25
UNIQUE Attribute 21
Verifying 26
WARN Attribute 21
XMIT Attribute 20,21

TM/JBS Component From $$DELETE

TM7R1-7109 Index To Binding Agent

Busy State
Binding Agents 25

C

CLASS Keyword
TYPE(PRODUCT) Statement 51

CNTL
JECL Statement 114
Mellon Bank Compatibility 114
SET in JAL 112

CNTL Facility
Mellon Bank Compatibility 112

CNTLDEF in JAL
Mellon Bank Compatibility 112

CONTROL Subparameter
TYPE(PRODUCT) Statement 50

Commands
Mellon Bank Compatibility 113

Components
TM/Job Binding Services 11

Considerations
API 25
JAL 26,92
JBS Function 24
JECL 24
Job Limiting 93

Controlling
Limiting Agents 95

D

DD SUBSYS
Binding Agents 22
Description 115
JAL Verification 115
JBS ACTIVATE 116
JBS BIND 116
JBS DEACTIVATE 116
JBS Function Exit 19 115
JBS MESSAGE 116
JLS LIMIT 117
Syntax 116

DD Subsystem
Introduction 15

DISPLAY_ONLY Keyword
TYPE(PRODUCT) Statement 51

DTMJBAPI
Sample Assembler Linkage 122
Sample CLIST Invocation 123
Sample JCL Invocation 123
TSO CPPL Format 122
Using 121

Deactivating
Using the API 119

Definition
Attributes for Binding Agents 19
Binding Agent 20
Limiting Agents 90

Deletion Considerations
Binding Agents 25

Description
API 119
DD SUBSYS Interface 115
JBS Function 17
JLS Function 87
Limiting Agents 88

E

EXC Keyword
Mellon Bank Compatibility 112

EXIT 19
DD SUBSYS 115
Job Binding Services 33

Enabling Components
Mellon Bank Compatibility 109

Examples
Limiting Agents Naming 94

Exits
JBS Extensions 16
Job Binding Services 33

F

FAIL_MSG Keyword
TYPE(PRODUCT) Statement 51

Facilities Summary
API 123
Job Binding Services 32
Job Chaining Services 108
Job Limiting Services 100
Mellon Bank Compatibility 113

Functional Summary
TM/Job Binding Services 11

G

GLOBAL Attribute
Binding Agent 20

Group Definition
Binding Agent 20

H

HERE Keyword
Mellon Bank Compatibility 111

I

IBM Scheduling Environment
Converting From 85

Implementation Summary
Before & After 104
JBS Function 17

From Busy State ThruPut Manager® System Programming Guide

To Implementation Summary Index TM7R1-7109

JLS Function 88
Job Chaining Services 104

Incompatible Agents
$$DELETE 38
Example 39
Introduction 35
Usage 36

Installation-defined Information
Displayed by UDF 31,99

Introduction
API for JBS 16
DD Subsystem 15
JBS Environments 65
JECL Support 15
Job Binding Services 12
Job Chaining Services 14,103
Job Limiting Services 13
Mellon Bank Compatibility 15,109
Software Access Control 43
Started Task Support 15

J

JAL
Considerations 26
Environments 86

JAL Considerations 92
JAL Extensions

JBS 12
JAL VERIFY

Binding Agents 27
JAL Verification

DD SUBSYS 115
JBS

Incompatible Agents 35
JBS ABANDON

Operator Command 32
JBS ACTIVATE

DD Subsystem Interface 116
Operator Command 32
Started Tasks 116

JBS API
Introduction 16

JBS BIND
DD Subsystem Interface 116
Started Tasks 116

JBS DEACTIVATE
DD Subsystem Interface 116
Operator Command 32
Started Tasks 116

JBS DEFINE
Operator Command 32

JBS DELETE
Operator Command 32

JBS DISPLAY
Mellon Bank Compatibility 113
Operator Command 32

JBS Environments
Defining 76
Definition Considerations 83
Deleted 84

Implementation 69
Installation 82
Introduction 65
MHS Considerations 84
Resource Element 66
Supporting Components 67
Undefined 83
Using JAL 86
Using JECL 86

JBS Files
Control File 16
Introduction 16

JBS Function
API JECL Statement 123
Considerations 24
Description 17

JBS Function Interface
Started Tasks 115

JBS MESSAGE
DD Subsystem Interface 116
JECL Statement 123
Started Tasks 116

JBS Message
API 123

JCS AFTER
Before & After 108
JECL Statement 108

JCS BATCH
Before & After 108
JECL Statement 108

JCS BEFORE
Before & After 108
JECL Statement 108

JCS DISPLAY
Mellon Bank Compatibility 113
Operator Command 108

JCS RELEASE
Operator Command 108

JCS WITH
JECL Statement 114
Mellon Bank Compatibility 114

JECL
Binding Agents 22
Considerations 24
Environments 86

JECL Statements
Before & After 104
Job Binding Services 32
Job Chaining Services 104,108
Job Limiting Services 100
Mellon Bank Compatibility 111,114

JECL Support
Introduction 15

JES2 Exit 14
JLS 97

JLS
JES2 Exit 14 97
QGET 97

JLS ABANDON
Operator Command 100

JLS DISPLAY
Mellon Bank Compatibility 113
Operator Command 100

TM/JBS Component From Incompatible Agents

TM7R1-7109 Index To JLS DISPLAY

JLS ENQ
JECL Statement 100,101,114
Mellon Bank Compatibility 114

JLS Function
Description 87
Implementation Summary 88
Limiting Agents 88

JLS Function Interface
Started Tasks 115

JLS LIMIT
DD Subsystem Interface 117
JECL Statement 100,101
Started Tasks 117

JLS RECONCILE
Operator Command 100

JLS RESET
Operator Command 100

JLS SET
Operator Command 100

JLS_LIMITDEF
Job Limiting Services 89
Limiting Considerations 93

Job Binding Services
API Fixed Message 120
API Message Pattern 120
Component 11
Exit 13 33
Exits 16,33
Facilities Summary 32
Fixed Message API 23
Functional Summary 11
Introduction 11,12
JAL Extensions 12
JBS ABANDON Command 32
JBS ACTIVATE Command 32
JBS DEACTIVATE Command 32
JBS DEFINE Command 32
JBS DELETE Command 32
JBS DISPLAY Command 32
JECL Statements 32
Message Pattern API 23
Operator Command 32
UDF Extensions 30

Job Chaining Services
AFTER Statement 108
BATCH Name 103
BATCH Name Conventions 104
BEFORE Statement 108
Before & After 103
Facilities Summary 108
Implementation 104
Introduction 14,103
JCS BATCH Statement 108
JCS BEFORE Statement 108
JCS DISPLAY Command 108
JCS RELEASE Command 108
JECL Statements 104,108
Operator Command 108
Requirements 103
UDF Extensions 107

Job Limiting Services
Facilities Summary 100
Introduction 13

JECL Statements 100
JLS ABANDON Command 100
JLS DISPLAY Command 100
JLS ENQ Statement 100,101
JLS LIMIT Statement 100,101
JLS RECONCILE Command 100
JLS RESET Command 100
JLS SET Command 100
JLS_LIMITDEF in JAL 89
Operator Command 100
UDF Extensions 99

Job-related Attribute
Binding Agent 19

K

Keywords
AGENT in TYPE(PRODUCT) Statement 50
CLASS in TYPE(PRODUCT) Statement 51
DISPLAY_ONLY in TYPE(PRODUCT) Statement

51
FAIL_MSG in TYPE(PRODUCT) Statement 51
LOG_MSG in TYPE(PRODUCT) Statement 51
NOTES in TYPE(PRODUCT) Statement 51
RESOURCE in TYPE(PRODUCT) Statement 51
SAF_AUTHORITY in TYPE(PRODUCT)

Statement 50
WARN_MSG in TYPE(PRODUCT) Statement 51

L

LOCAL Attribute
Binding Agent 20

LOG Attribute
Binding Agent Definition 21

LOG_MSG Keyword
TYPE(PRODUCT) Statement 51

Limiting Agents
Controlling 95
Defining 90
Description 88
Example of Naming 94
JESplex 96
JLS Function 88
Naming Relationships 93
Operational Control 95
Scope 96
System Level 96
Use of STRINGDEF for Naming 95

Limiting Considerations 93
JLS_LIMITDEF JAL Statement 93

M

MULTIPLE Attribute
Binding Agent Definition 21

Mellon Bank Compatibility
$QA Command 110
$QD Command 110

From JLS ENQ ThruPut Manager® System Programming Guide

To Mellon Bank Compatibility Index TM7R1-7109

$RESTABL Macro 110
$RESTABL Search 111
CNTL Facility 112
CNTL Statement 114
CNTLDEF in JAL 112
Command 113
Component Enabling 109
EXC Keyword 112
Facilities Summary 113
HERE Keyword 111
Introduction 15,109
JBS DISPLAY Command 113
JCS DISPLAY Command 113
JCS WITH JECL Statement 114
JECL Statements 111,114
JLS DISPLAY Command 113
JLS ENQ JECL Statement 114
ROUTE XEQ JECL Statement 114
Resource Routing 109
Resource Routing Definition 110
SHR Keyword 112
SYS Keyword 111
WITH Facility 112
WITH JECL Statement 114

Message Id
API 120

Message Pattern
API 120

N

NOTES Keyword
TYPE(PRODUCT) Statement 51

Naming
Binding Agents 18
Limiting Agents 89

O

OPER Attribute Definition
Binding Agent 22

Operational Control
Limiting Agents 95

Operator Commands
Job Binding Services 32
Job Chaining Services 108
Job Limiting Services 100

P

PERMANENT Agents
Activation Considerations 28
Deactivation Considerations 28

PERMANENT Attribute
Binding Agent 19

Packaging
TM/Job Binding Services 11

Q

QGET
JLS 97

R

READ Subparameter
TYPE(PRODUCT) Statement 50

RESOURCE Keyword
TYPE(PRODUCT) Statement 51

ROUTE XEQ
JECL Statement 114
Mellon Bank Compatibility 114

Requirements
Job Chaining Services 103

Reserving
Binding Agents 25

Resource Element
Defining 73
Definition Considerations 84
Deleted 84
JBS Environments 66
Undefined 84

Resource Routing
Defining 110
Mellon Bank Compatibility 109

Route Code
API 120

S

SAC
Associating Tables With Systems 47
Batch Control 56
Introduction 43
Mandatory TYPE Statements 48
Message Inserts 48
Sample Table 61
TSO Control 53
TYPE(BATCH) 56
TYPE(COMMAND) 52
TYPE(EXEMPT_USERS) 53
TYPE(ISPF_COMMAND) 52
TYPE(ISPF_PANEL) 52
TYPE(ISPF_PGM) 52
TYPE(JES2_NAMES) 53
TYPE(MSGID) 48
TYPE(PRODUCT) 50
TYPE(READY_COMMAND) 52
Table Coding Syntax 45
Table Structure 46

SAF_AUTHORITY Keyword
TYPE(PRODUCT) Statement 50

SHR Keyword
Mellon Bank Compatibility 112

STRINGDEF
Limiting Agents Naming 95

TM/JBS Component From Message Id

TM7R1-7109 Index To STRINGDEF

SUBSYS Keyword
In DD Statement 116

SYS Keyword
Mellon Bank Compatibility 111

Scope
Limiting Agents 96

Sequencing
Batch Jobs 105

Software Access Control
See SAC

Started Task Support
Introduction 15

Started Tasks
Control Statements 115
EXIT 19 115
JAL Verification 115
JBS ACTIVATE 116
JBS BIND 116
JBS DEACTIVATE 116
JBS Function Interface 115
JBS MESSAGE 116
JCS BATCH Names 105
JLS Function Interface 115
JLS LIMIT 117

Subparameters
ALTER in TYPE(PRODUCT) 50
CONTROL in TYPE(PRODUCT) 50
READ in TYPE(PRODUCT) 50
UPDATE in TYPE(PRODUCT) 50

Subsystem Services
$$TM 116
ThruPut Manager 116

Syntax
DD SUBSYS 116

System Level
Limiting Agents 96

T

TM/JBS
Component 11

TSO Control
Software Access Control 53

TSO Session
JCS BATCH Names 105

TYPE(BATCH)
SAC TYPE Statement 56

TYPE(COMMAND)
SAC TYPE Statement 52

TYPE(EXEMPT_USERS)
SAC TYPE Statement 53

TYPE(ISPF_COMMAND)
SAC TYPE Statement 52

TYPE(ISPF_PANEL)
SAC TYPE Statement 52

TYPE(ISPF_PGM)
SAC TYPE Statement 52

TYPE(JES2_NAMES)
SAC TYPE Statement 53

TYPE(MSGID)
SAC TYPE Statement 48

TYPE(PRODUCT)
AGENT Keyword 50
ALTER Subparameter 50
CLASS Keyword 51
CONTROL Subparameter 50
DISPLAY_ONLY Keyword 51
FAIL_MSG Keyword 51
LOG_MSG Keyword 51
NOTES Keyword 51
READ Subparameter 50
RESOURCE Keyword 51
SAC TYPE Statement 50
SAF_AUTHORITY Keyword 50
UPDATE Subparameter 50
WARN_MSG Keyword 51

TYPE(READY_COMMAND)
SAC TYPE Statement 52

U

UDF
Displaying Installation JBS Information 31
Displaying Installation JLS Information 99
JBS Extensions 30
JCS Extensions 107
JLS Extensions 99

UNIQUE Attribute
Binding Agent Definition 21

UPDATE Subparameter
TYPE(PRODUCT) Statement 50

V

Verifying
Binding Agents 26

W

WARN Attribute
Binding Agent Definition 21

WARN_MSG Keyword
TYPE(PRODUCT) Statement 51

WITH
JECL Statement 114
Mellon Bank Compatibility 114

WITH Facility
Mellon Bank Compatibility 112

X

XMIT Attribute
Binding Agent 20
Binding Agent Definition 21

From SUBSYS KeywordThruPut Manager® System Programming Guide

To XMIT Attribute Index TM7R1-7109

	Table of Contents
	Preface
	About This Manual 3
	Summary of Changes 3

	The TM/JBS Component
	Chapter 1. The TM/JBS Functions—An Optional Playground
	TM/Job Binding Services Option 11
	Functions of TM/Job Binding Services 11
	Job Action Language (JAL) Extensions for TM/JBS 12
	Job Binding Services (JBS) 12
	Job Limiting Services (JLS) 13
	Job Chaining Services (JCS or Before & After) 14
	Mellon Bank Compatibility Services 15
	JECL Statement Extensions 15
	Started Task Support 15
	Application Program Interface Function 16

	User Display Facility Extensions 16
	User Exits 16
	JBS File Requirements 16

	Chapter 2. Job Binding Services (JBS) Function
	Description 17
	Implementation Summary 17
	Job Binding Agents 18
	What is a Binding Agent? 18
	Binding Agent Names 18
	Binding Agent Attributes 19
	Agent Definition 20
	Activating Binding Agents 22
	Requesting BINDING 23

	JBS Considerations 24
	JECL Considerations 24
	Binding Agent—Verifying and Reserving 25
	Definition/Deletion of Agents 25
	API Considerations 25
	Job Action Language 26
	Activation/Deactivation of PERMANENT Agents 28

	UDF Extensions for JBS 30
	Displaying Installation-defined Information 31

	Facilities Summary 32

	Chapter 3. JBS: Incompatible Agents
	Incompatible Agents: The Problem 35
	Incompatibility Categories: The Solution 35
	Usage And Examples 36
	Assigning Categories 36
	Sample Category Definitions 36
	Category 0: The Default 36
	Category Relationships 37
	Conflicting Definitions 38
	Self-incompatibility 38
	“Soft” Incompatibility: $$DELETE 38
	Multiple Agents In A Single Bind Statement 39

	A Case Study 39

	Chapter 4. JBS: Software Access Control (SAC)
	Software Access Control Overview 43
	How SAC Works 43
	The SAC Table 45
	Table Coding Syntax 45
	Table Structure 46
	Associating Table Statements with a System 47
	Mandatory TYPE Statements 48
	Optional TYPE Statements 52
	TYPE Statements for SAC Control 53
	TSO Access Control 53

	Batch Access Control 56
	Sample SAC Table 61

	Chapter 5. JBS: Environment Services
	Prerequisites 65
	What is a JBS Environment? 65
	JBS Environments vs. Scheduling Environments 65

	What Is a Resource Element? 66
	JBS Resource Elements vs. SCHENV Resource Elements 66

	Components to Support JBS Environments 67
	JBS Environment Definition ISPF Dialog 67
	JAL for JBS Environments 67
	JECL for JBS Environments 68
	MHS for JBS Environments 68
	Operator Commands for JBS Environments 69

	Implementation 69
	Defining JBS Environments and Resource Elements 70
	Creating Resource Elements 73
	Creating JBS Environments 76
	Installing a JBS Environment 82
	Notes and Considerations 83

	Converting from IBM Scheduling Environments 85
	Using JAL with JBS Environments 86
	Using JECL with JBS Environments 86

	Chapter 6. Job Limiting Services (JLS) Function
	Description 87
	Implementation Summary 88
	Job Limiting Agents 88
	What Is a Limiting Agent? 88
	Activating Limiting Agents 89
	The JLS_LIMITDEF Statement in JAL 89
	JAL Action Statements 92

	Job Limiting Considerations 93
	System Level Limiting 96
	JLS and JES2 Exit 14 (Job Queue Work Select) 97
	UDF Extensions For JLS 99
	Displaying Installation-defined Information 99

	Facilities Summary 100

	Chapter 7. Job Chaining Services (JCS) Function: Before & After
	Introduction 103
	Requirements 103
	Job Chaining Services—Before & After 103
	BATCH Name Conventions 104
	Implementation Summary 104
	JECL Statements 104
	Batch Job Sequencing 105

	Adding a BATCH Name to TSUs and STCs 105
	Implementation 105
	Considerations 106
	Example 107

	UDF Extensions for JCS 107
	Facilities Summary 108

	Chapter 8. Mellon Bank Compatibility Services
	Introduction 109
	Enabling Mellon Bank Compatibility 109
	The Resource Routing Facility 109
	Resource Definition 110
	Resource Activation/Deactivation 110
	Display Facilities 110
	JECL Control Statements 111
	Special Cases 111
	Additional Considerations 112

	The CNTL Facility 112
	Implementation 112

	The WITH Facility 112
	Implementation 113

	Facilities Summary 113

	Chapter 9. DD Subsystem Interface
	Introduction 115
	DD SUBSYS Interface 115
	DD SUBSYS 116

	Chapter 10. Application Program Interface (API)
	Description 119
	Activating/Deactivating Using the API 119
	Testing Agent Status Using the API 121

	Facilities Summary 123

	Index

	Index
	Special Characters
	$$DELETE
	Special Incompatible Agent 38

	$QA Command
	Mellon Bank Compatibility 110

	$QD Command
	Mellon Bank Compatibility 110

	$RESTABL Macro
	Mellon Bank Compatibility 110

	$RESTABL Search
	Mellon Bank Compatibility 111

	&AGENT
	SAC Message Insert 48

	&CURRENT
	SAC Message Insert 48

	&ENTITY
	SAC Message Insert 49

	&JOBNAME
	SAC Message Insert 49

	&JOBNUMBER
	SAC Message Insert 49

	&NAME
	SAC Message Insert 49

	&PRODUCT
	SAC Message Insert 49

	&SYSTEMS
	SAC Message Insert 49

	A
	AFTER
	JECL Statement 108

	AGENT Keyword
	TYPE(PRODUCT) Statement 50

	ALTER Subparameter
	TYPE(PRODUCT) Statement 50

	API
	Activating and Deactivating With 119
	Binding Agent 23
	COBOL 120
	Considerations 25
	See Also DTMJBAPI
	Description 119
	Facilities Summary 123
	Fixed Message 23,120
	Introduction for JBS 16
	JBS Message 123
	Message Format 119
	Message ID 120
	Message Pattern 23,120
	PL/I 120
	Route Code 120
	Testing Agent Status With 121
	Using DTMJBAPI 121

	Access Control
	Software 43

	Activating
	Binding Agents 22
	Limiting Agents 89
	Using the API 119

	Agents
	Incompatible 35

	B
	BATCH Name
	Before & After 103
	Conventions 104
	For TSUs and STCs 105
	JCS 103

	BEFORE
	JECL Statement 108

	Batch Control
	Software Access Control 56

	Before & After
	BATCH Name 103
	Facilities Summary 108
	Implementation 104
	JCS DISPLAY Command 108
	JCS RELEASE Command 108
	JECL Statements 104,108
	Job Chaining Services 103
	Operator Command 108
	Scope of Control 103

	Binding Agent
	API 23
	Activating 22
	Activation Attributes 20
	Attributes 19
	Binding Request 23
	Busy 25
	DD SUBSYS 22
	Defining 20
	Definition Attributes 19
	Deletion Considerations 25
	GLOBAL Attribute 20
	Group Definition 20
	Introduction 18
	JAL VERIFY Command 27
	JECL 22
	Job-related 19
	LOCAL Attribute 20
	LOG Attribute 21
	MULTIPLE Attribute 21
	Naming 18
	OPER Attribute 22
	PERMANENT Attribute 19
	Reserving 25
	UNIQUE Attribute 21
	Verifying 26
	WARN Attribute 21
	XMIT Attribute 20,21

	Busy State
	Binding Agents 25

	C
	CLASS Keyword
	TYPE(PRODUCT) Statement 51

	CNTL
	JECL Statement 114
	Mellon Bank Compatibility 114
	SET in JAL 112

	CNTL Facility
	Mellon Bank Compatibility 112

	CNTLDEF in JAL
	Mellon Bank Compatibility 112

	CONTROL Subparameter
	TYPE(PRODUCT) Statement 50

	Commands
	Mellon Bank Compatibility 113

	Components
	TM/Job Binding Services 11

	Considerations
	API 25
	JAL 26,92
	JBS Function 24
	JECL 24
	Job Limiting 93

	Controlling
	Limiting Agents 95

	D
	DD SUBSYS
	Binding Agents 22
	Description 115
	JAL Verification 115
	JBS ACTIVATE 116
	JBS BIND 116
	JBS DEACTIVATE 116
	JBS Function Exit 19 115
	JBS MESSAGE 116
	JLS LIMIT 117
	Syntax 116

	DD Subsystem
	Introduction 15

	DISPLAY_ONLY Keyword
	TYPE(PRODUCT) Statement 51

	DTMJBAPI
	Sample Assembler Linkage 122
	Sample CLIST Invocation 123
	Sample JCL Invocation 123
	TSO CPPL Format 122
	Using 121

	Deactivating
	Using the API 119

	Definition
	Attributes for Binding Agents 19
	Binding Agent 20
	Limiting Agents 90

	Deletion Considerations
	Binding Agents 25

	Description
	API 119
	DD SUBSYS Interface 115
	JBS Function 17
	JLS Function 87
	Limiting Agents 88

	E
	EXC Keyword
	Mellon Bank Compatibility 112

	EXIT 19
	DD SUBSYS 115
	Job Binding Services 33

	Enabling Components
	Mellon Bank Compatibility 109

	Examples
	Limiting Agents Naming 94

	Exits
	JBS Extensions 16
	Job Binding Services 33

	F
	FAIL_MSG Keyword
	TYPE(PRODUCT) Statement 51

	Facilities Summary
	API 123
	Job Binding Services 32
	Job Chaining Services 108
	Job Limiting Services 100
	Mellon Bank Compatibility 113

	Functional Summary
	TM/Job Binding Services 11

	G
	GLOBAL Attribute
	Binding Agent 20

	Group Definition
	Binding Agent 20

	H
	HERE Keyword
	Mellon Bank Compatibility 111

	I
	IBM Scheduling Environment
	Converting From 85

	Implementation Summary
	Before & After 104
	JBS Function 17
	JLS Function 88
	Job Chaining Services 104

	Incompatible Agents
	$$DELETE 38
	Example 39
	Introduction 35
	Usage 36

	Installation-defined Information
	Displayed by UDF 31,99

	Introduction
	API for JBS 16
	DD Subsystem 15
	JBS Environments 65
	JECL Support 15
	Job Binding Services 12
	Job Chaining Services 14,103
	Job Limiting Services 13
	Mellon Bank Compatibility 15,109
	Software Access Control 43
	Started Task Support 15

	J
	JAL
	Considerations 26
	Environments 86

	JAL Considerations 92
	JAL Extensions
	JBS 12

	JAL VERIFY
	Binding Agents 27

	JAL Verification
	DD SUBSYS 115

	JBS
	Incompatible Agents 35

	JBS ABANDON
	Operator Command 32

	JBS ACTIVATE
	DD Subsystem Interface 116
	Operator Command 32
	Started Tasks 116

	JBS API
	Introduction 16

	JBS BIND
	DD Subsystem Interface 116
	Started Tasks 116

	JBS DEACTIVATE
	DD Subsystem Interface 116
	Operator Command 32
	Started Tasks 116

	JBS DEFINE
	Operator Command 32

	JBS DELETE
	Operator Command 32

	JBS DISPLAY
	Mellon Bank Compatibility 113
	Operator Command 32

	JBS Environments
	Defining 76
	Definition Considerations 83
	Deleted 84
	Implementation 69
	Installation 82
	Introduction 65
	MHS Considerations 84
	Resource Element 66
	Supporting Components 67
	Undefined 83
	Using JAL 86
	Using JECL 86

	JBS Files
	Control File 16
	Introduction 16

	JBS Function
	API JECL Statement 123
	Considerations 24
	Description 17

	JBS Function Interface
	Started Tasks 115

	JBS MESSAGE
	DD Subsystem Interface 116
	JECL Statement 123
	Started Tasks 116

	JBS Message
	API 123

	JCS AFTER
	Before & After 108
	JECL Statement 108

	JCS BATCH
	Before & After 108
	JECL Statement 108

	JCS BEFORE
	Before & After 108
	JECL Statement 108

	JCS DISPLAY
	Mellon Bank Compatibility 113
	Operator Command 108

	JCS RELEASE
	Operator Command 108

	JCS WITH
	JECL Statement 114
	Mellon Bank Compatibility 114

	JECL
	Binding Agents 22
	Considerations 24
	Environments 86

	JECL Statements
	Before & After 104
	Job Binding Services 32
	Job Chaining Services 104,108
	Job Limiting Services 100
	Mellon Bank Compatibility 111,114

	JECL Support
	Introduction 15

	JES2 Exit 14
	JLS 97

	JLS
	JES2 Exit 14 97
	QGET 97

	JLS ABANDON
	Operator Command 100

	JLS DISPLAY
	Mellon Bank Compatibility 113
	Operator Command 100

	JLS ENQ
	JECL Statement 100,101,114
	Mellon Bank Compatibility 114

	JLS Function
	Description 87
	Implementation Summary 88
	Limiting Agents 88

	JLS Function Interface
	Started Tasks 115

	JLS LIMIT
	DD Subsystem Interface 117
	JECL Statement 100,101
	Started Tasks 117

	JLS RECONCILE
	Operator Command 100

	JLS RESET
	Operator Command 100

	JLS SET
	Operator Command 100

	JLS_LIMITDEF
	Job Limiting Services 89
	Limiting Considerations 93

	Job Binding Services
	API Fixed Message 120
	API Message Pattern 120
	Component 11
	Exit 13 33
	Exits 16,33
	Facilities Summary 32
	Fixed Message API 23
	Functional Summary 11
	Introduction 11,12
	JAL Extensions 12
	JBS ABANDON Command 32
	JBS ACTIVATE Command 32
	JBS DEACTIVATE Command 32
	JBS DEFINE Command 32
	JBS DELETE Command 32
	JBS DISPLAY Command 32
	JECL Statements 32
	Message Pattern API 23
	Operator Command 32
	UDF Extensions 30

	Job Chaining Services
	AFTER Statement 108
	BATCH Name 103
	BATCH Name Conventions 104
	BEFORE Statement 108
	Before & After 103
	Facilities Summary 108
	Implementation 104
	Introduction 14,103
	JCS BATCH Statement 108
	JCS BEFORE Statement 108
	JCS DISPLAY Command 108
	JCS RELEASE Command 108
	JECL Statements 104,108
	Operator Command 108
	Requirements 103
	UDF Extensions 107

	Job Limiting Services
	Facilities Summary 100
	Introduction 13
	JECL Statements 100
	JLS ABANDON Command 100
	JLS DISPLAY Command 100
	JLS ENQ Statement 100,101
	JLS LIMIT Statement 100,101
	JLS RECONCILE Command 100
	JLS RESET Command 100
	JLS SET Command 100
	JLS_LIMITDEF in JAL 89
	Operator Command 100
	UDF Extensions 99

	Job-related Attribute
	Binding Agent 19

	K
	Keywords
	AGENT in TYPE(PRODUCT) Statement 50
	CLASS in TYPE(PRODUCT) Statement 51
	DISPLAY_ONLY in TYPE(PRODUCT) Statement 51
	FAIL_MSG in TYPE(PRODUCT) Statement 51
	LOG_MSG in TYPE(PRODUCT) Statement 51
	NOTES in TYPE(PRODUCT) Statement 51
	RESOURCE in TYPE(PRODUCT) Statement 51
	SAF_AUTHORITY in TYPE(PRODUCT) Statement 50
	WARN_MSG in TYPE(PRODUCT) Statement 51

	L
	LOCAL Attribute
	Binding Agent 20

	LOG Attribute
	Binding Agent Definition 21

	LOG_MSG Keyword
	TYPE(PRODUCT) Statement 51

	Limiting Agents
	Controlling 95
	Defining 90
	Description 88
	Example of Naming 94
	JESplex 96
	JLS Function 88
	Naming Relationships 93
	Operational Control 95
	Scope 96
	System Level 96
	Use of STRINGDEF for Naming 95

	Limiting Considerations 93
	JLS_LIMITDEF JAL Statement 93

	M
	MULTIPLE Attribute
	Binding Agent Definition 21

	Mellon Bank Compatibility
	$QA Command 110
	$QD Command 110
	$RESTABL Macro 110
	$RESTABL Search 111
	CNTL Facility 112
	CNTL Statement 114
	CNTLDEF in JAL 112
	Command 113
	Component Enabling 109
	EXC Keyword 112
	Facilities Summary 113
	HERE Keyword 111
	Introduction 15,109
	JBS DISPLAY Command 113
	JCS DISPLAY Command 113
	JCS WITH JECL Statement 114
	JECL Statements 111,114
	JLS DISPLAY Command 113
	JLS ENQ JECL Statement 114
	ROUTE XEQ JECL Statement 114
	Resource Routing 109
	Resource Routing Definition 110
	SHR Keyword 112
	SYS Keyword 111
	WITH Facility 112
	WITH JECL Statement 114

	Message Id
	API 120

	Message Pattern
	API 120

	N
	NOTES Keyword
	TYPE(PRODUCT) Statement 51

	Naming
	Binding Agents 18
	Limiting Agents 89

	O
	OPER Attribute Definition
	Binding Agent 22

	Operational Control
	Limiting Agents 95

	Operator Commands
	Job Binding Services 32
	Job Chaining Services 108
	Job Limiting Services 100

	P
	PERMANENT Agents
	Activation Considerations 28
	Deactivation Considerations 28

	PERMANENT Attribute
	Binding Agent 19

	Packaging
	TM/Job Binding Services 11

	Q
	QGET
	JLS 97

	R
	READ Subparameter
	TYPE(PRODUCT) Statement 50

	RESOURCE Keyword
	TYPE(PRODUCT) Statement 51

	ROUTE XEQ
	JECL Statement 114
	Mellon Bank Compatibility 114

	Requirements
	Job Chaining Services 103

	Reserving
	Binding Agents 25

	Resource Element
	Defining 73
	Definition Considerations 84
	Deleted 84
	JBS Environments 66
	Undefined 84

	Resource Routing
	Defining 110
	Mellon Bank Compatibility 109

	Route Code
	API 120

	S
	SAC
	Associating Tables With Systems 47
	Batch Control 56
	Introduction 43
	Mandatory TYPE Statements 48
	Message Inserts 48
	Sample Table 61
	TSO Control 53
	TYPE(BATCH) 56
	TYPE(COMMAND) 52
	TYPE(EXEMPT_USERS) 53
	TYPE(ISPF_COMMAND) 52
	TYPE(ISPF_PANEL) 52
	TYPE(ISPF_PGM) 52
	TYPE(JES2_NAMES) 53
	TYPE(MSGID) 48
	TYPE(PRODUCT) 50
	TYPE(READY_COMMAND) 52
	Table Coding Syntax 45
	Table Structure 46

	SAF_AUTHORITY Keyword
	TYPE(PRODUCT) Statement 50

	SHR Keyword
	Mellon Bank Compatibility 112

	STRINGDEF
	Limiting Agents Naming 95

	SUBSYS Keyword
	In DD Statement 116

	SYS Keyword
	Mellon Bank Compatibility 111

	Scope
	Limiting Agents 96

	Sequencing
	Batch Jobs 105

	Software Access Control
	See SAC

	Started Task Support
	Introduction 15

	Started Tasks
	Control Statements 115
	EXIT 19 115
	JAL Verification 115
	JBS ACTIVATE 116
	JBS BIND 116
	JBS DEACTIVATE 116
	JBS Function Interface 115
	JBS MESSAGE 116
	JCS BATCH Names 105
	JLS Function Interface 115
	JLS LIMIT 117

	Subparameters
	ALTER in TYPE(PRODUCT) 50
	CONTROL in TYPE(PRODUCT) 50
	READ in TYPE(PRODUCT) 50
	UPDATE in TYPE(PRODUCT) 50

	Subsystem Services
	$$TM 116
	ThruPut Manager 116

	Syntax
	DD SUBSYS 116

	System Level
	Limiting Agents 96

	T
	TM/JBS
	Component 11

	TSO Control
	Software Access Control 53

	TSO Session
	JCS BATCH Names 105

	TYPE(BATCH)
	SAC TYPE Statement 56

	TYPE(COMMAND)
	SAC TYPE Statement 52

	TYPE(EXEMPT_USERS)
	SAC TYPE Statement 53

	TYPE(ISPF_COMMAND)
	SAC TYPE Statement 52

	TYPE(ISPF_PANEL)
	SAC TYPE Statement 52

	TYPE(ISPF_PGM)
	SAC TYPE Statement 52

	TYPE(JES2_NAMES)
	SAC TYPE Statement 53

	TYPE(MSGID)
	SAC TYPE Statement 48

	TYPE(PRODUCT)
	AGENT Keyword 50
	ALTER Subparameter 50
	CLASS Keyword 51
	CONTROL Subparameter 50
	DISPLAY_ONLY Keyword 51
	FAIL_MSG Keyword 51
	LOG_MSG Keyword 51
	NOTES Keyword 51
	READ Subparameter 50
	RESOURCE Keyword 51
	SAC TYPE Statement 50
	SAF_AUTHORITY Keyword 50
	UPDATE Subparameter 50
	WARN_MSG Keyword 51

	TYPE(READY_COMMAND)
	SAC TYPE Statement 52

	U
	UDF
	Displaying Installation JBS Information 31
	Displaying Installation JLS Information 99
	JBS Extensions 30
	JCS Extensions 107
	JLS Extensions 99

	UNIQUE Attribute
	Binding Agent Definition 21

	UPDATE Subparameter
	TYPE(PRODUCT) Statement 50

	V
	Verifying
	Binding Agents 26

	W
	WARN Attribute
	Binding Agent Definition 21

	WARN_MSG Keyword
	TYPE(PRODUCT) Statement 51

	WITH
	JECL Statement 114
	Mellon Bank Compatibility 114

	WITH Facility
	Mellon Bank Compatibility 112

	X
	XMIT Attribute
	Binding Agent 20
	Binding Agent Definition 21

